Date:

16 July 2001

To:

Bechtel Hanford Inc. (technical representative)

From:

TechLaw, Inc.

Project:

100F Area - Full Protocol

Subject: Inorganics - Data Package No. H1353-LLI (SDG No. H1353)

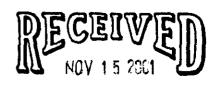
INTRODUCTION

This memo presents the results of data validation on Data Package No. H1353-LLI prepared by Lionville Laboratory Incorporated (LLI). A list of samples validated along with the analyses reported and the method of analysis is provided in the following table.

Sample ID	Sample Date	Media	Validation	Analysis
B121F5	5/14/01	Soil	С	See note 1
B121F6	5/14/01	Soil	С	See note 1

^{1 -} ICP metals by 6010B (lead).

Data validation was conducted in accordance with the Bechtel Hanford Incorporated (BHI) validation statement of work and the 100 Area Remedial Action Sampling and Analysis Plan (DOE/RL September 2000). Appendices 1 through 6 provide the following information as indicated below:


- Appendix 1. Glossary of Data Reporting Qualifiers
- Appendix 2. Summary of Data Qualification
- Appendix 3. Qualified Data Summary and Annotated Laboratory Reports
- Appendix 4. Laboratory Narrative and Chain-of-Custody Documentation
- Appendix 5. Data Validation Supporting Documentation
- Appendix 6. Additional Documentation Requested by Client

DATA QUALITY PARAMETERS

Holding Times

Analytical holding times for metals are assessed to ascertain whether the holding time requirements were met by the laboratory. The holding time requirements are as follows: Soil samples must be analyzed within 6 months for ICP metals.

All holding times were acceptable.

Preparation (Method) Blanks

Preparation Blanks

At least one preparation blank, consisting of deionized distilled water processed through each sample preparation and analysis procedure, must be prepared and analyzed with every sample delivery group. In the case of positive blank results, samples with digestate concentrations less than five times the preparation blank value have had their associated values qualified as non-detected and flagged "U". Samples with concentrations of greater than five times the highest blank concentration do not require qualification.

In the case of negative blank results, if the absolute value exceeds the contract required detection limit (CRDL), all nondetects are rejected and flagged "UR" and all detects that are less than ten times the absolute value of the associated preparation blank result are qualified as estimates and flagged "J". If the absolute value of the negative preparation blank is greater than the instrument detection limit (IDL) and less than or equal to the CRDL, all nondetects are qualified as estimates and flagged "UJ" and all detects less than ten times the absolute value of the blank are qualified as estimates and flagged "J". If the sample results are greater than ten times the absolute value of the preparation blank, no qualification is necessary.

All preparation blank results were acceptable.

Field Blank

No field blanks were submitted for analysis.

Accuracy

Matrix Spike

Matrix spike (MS) analyses are used to assess the analytical accuracy of the reported data and the effect of the matrix on the ability to accurately quantify sample concentrations. Matrix spike recoveries must fail within the range of 70% to 130%. Samples with a spike recovery of less than 30% and a sample result below the IDL are rejected and flagged "UR". Samples with a spike recovery of 30% to 69% and a sample result less than the IDL are qualified "UJ". Samples with a spike recovery of greater than 130% or less than 70% and a sample result greater than the IDL are qualified as estimates and flagged "J". Finally, for samples with a spike recovery greater than 130% and a sample result less than the IDL, no qualification is required.

All matrix spike recovery results were acceptable.

Precision

Laboratory Duplicate Samples

Analytical precision is expressed by the relative percent differences (RPD) between the recoveries of matrix spike duplicate (MSD) analyses performed on a sample in the analytical batch. Precision may alternatively be assessed using unspiked duplicate analyses performed on a sample in the analytical batch. If both sample and replicate activities (concentrations) are greater than five times the CRDL and the RPD is less than 30%, no qualification is required. If either activity (concentration) is less than five times the CRDL, the RPD control limit is less than or equal to two times the CRDL. If the RPD is outside the applicable control limit, associated results are qualified as estimated detects or estimated non-detects.

All laboratory duplicate results were acceptable.

Field Duplicate

No field duplicates were submitted for analysis.

Analytical Detection Levels

Reported analytical detection levels are compared against the 100 Area Remedial Action Sampling and Analysis Plan TDLs to ensure that laboratory detection levels meet the required criteria. All reported detection limits met the analyte specific TDL.

Completeness

Data package No. H1353-LLI (SDG No. H1353) was submitted for validation and verified for completeness. Completeness is based on the percentage of data determined to be valid (i.e., not rejected). The completion percentage was 100%.

MAJOR DEFICIENCIES

None found.

MINOR DEFICIENCIES

None found.

REFERENCES

BHI, MRB-SBB-A23665, Validation Statement of Work, Bechtel Hanford Incorporated, September 5, 1997.

DOE/RL-96-22, Rev. 2, 100 Area Remedial Action Sampling and Analysis Plan, U.S. Department of Energy, September 2000

Appendix 1 Glossary of Data Reporting Qualifiers

Qualifiers which may be applied by data validators in compliance with BHI validation SOW are as follows:

- Indicates the compound or analyte was analyzed for and not detected in the sample. The value reported is the sample quantitation limit corrected for sample dilution and moisture content by the laboratory.
- UJ Indicates the compound or analyte was analyzed for and not detected in the sample. Due to a minor QC deficiency identified during the data validation, the associated quantitation limit is an estimate.
- J Indicates the compound or analyte was analyzed for and detected. Due to a minor QC deficiency identified during the data validation, the associated concentration is an estimate, but the data are usable for decision-making purposes.
- BJ Applied to inorganic analyses only. Indicates the analyte concentration was greater than the IDL but less than the CRDL and is considered an estimated value.
- R Indicates the compound or analyte was analyzed for, detected, and due to an identified major QC deficiency, the data are unusable.
- UR Indicates the compound or analyte was analyzed for and not detected in the sample. Additionally, the data is unusable due to an identified major QC deficiency.
- NJ Indicates presumptive evidence of a compound at an estimated value. The data may not be valid for some specific applications (i.e., usable for decision-making purposes).
- Indicates presumptive evidence of a compound. The data may not be valid for some specific applications (i.e., usable for decision-making purposes).

Appendix 2
Summary of Data Qualification

DATA QUALIFICATION SUMMARY

SDG: H1353	REVIEWER: TLI	DATE: 7/16/01	PAGE_1_OF_1_
COMMENTS: No qualifi	ers assigned		

Appendix 3

Qualified Data Summary and Annotated Laboratory Reports

	_	_	_	_	_	_	_	_	_	_	_			_	_	_	_				_				_	_			_		_		
				g	L		Ĺ	Ĺ																									٦
				Result Q																													
	L	\vdash	-	\boldsymbol{T}	£	H	┝	-	┝	╀		<u> </u>	-	\vdash	\vdash		Н	Н	Ч	Н	Ч		Н	-	\dashv	-	Н		Н	_	Н	┦	-
				<u>=</u>	H	-	┝	H	┝	┝	-		┝		H				Н			_	-		-	_		\dashv	-		H	-	\dashv
		_		Result Q	 	L			L																								
				Ø	L		L	L					L	L	L			_							_								╛
				Result																													
				ø																											П		٦
				Result																													
			-	J .	H	H			-	-			H	H	H	H	7		7		٦	7			7	1	7	7	7	-	7	1	-
				Result 0																			1						7				7
	_	Ш	L		Н	Щ	Н	Н	_	L	Н	_	Н			_	4	_	4	4		4	_	_	4	4	4	\dashv	4	_	\dashv	4	\dashv
]				σ	Н	Н	Ц	Н	-		Н	\dashv	Н	Н	H	Н	\dashv	4		\dashv	4	_	4	-	\dashv	4	4	-	4	_	\dashv	\dashv	-
				Result	i .			İ																									
-				a]																Ī								
				Result																													
ĺ				ø													٦								7		٦					7	٦
	B121F6		5/14/01	Result	18.5																												
			Г	O																								٦			П		
363	B121F5		5/14/01	Result Q	11.1																												
SDG: H1353			ľ	101	2																												
Case	Sample Mumber	Remarks			Lead																												

Laboratory applied non-detect qualifiers "U" have been included in this table to minimize miss-interpretation of results. All other qualifiers shown were applied during validation.

Lionville Lababoratory, Inc.

INCRGANICS DATA SUMMARY REPORT 05/25/01

-002 812176	-001 B12	SAMPLE SIT	WORK URDER: 1	CLIENT: THUNK
176	B121PS Lead, Total	SITS ID	WORK UNDER: 11343-606-001-9999-00	CLIENT: THURASPORD 800-030 H1353
Leed, Total	Lead, Total	STYLOGA	8	_
Total				
11.5	11,1	RESULT		TAT
MG/XG	на/ка	UNITS		LVL LOT #: 01051798
0,24	0.24	LINIT	REFORTING	1051798
بر د	1.0	PACTOR	ROLLOTIG	

Ja Malor

Appendix 4

Laboratory Narrative and Chain-of-Custody Documentation

Analytical Report

Client: TNU-HANFORD B00-030

LVL#: 0105L798

SDG/SAF#: H1353/B00-030

W.O.#: 11343-606-001-9999-00

Date Received: 05-17-01

METALS CASE NARRATIVE

1. This narrative covers the analyses of 2 soil samples.

- 2. The samples were prepared and analyzed in accordance with methods checked on the attached glossary.
- 3. All analyses were performed within the required holding times.
- 4. The cooler temperature has been recorded on the Chain of Custody.
- 5. All Initial and Continuing Calibration Verifications (ICV/CCVs) were within the 90-110% control limits (80-120% for Mercury).
- 6. All Initial and Continuing Calibration Blanks (ICB/CCBs) were within control limits (less than the PQL).
- 7. The preparation/method blank (MB) was within method criteria {less than the Practical Quantitation Limit (3X the IDL), MB value less than 5% of the RCRA limit, or samples greater than 20X MB value}. Refer to the Inorganics Method Blank Data Summary.
- 8. All ICP Interference Check Standards were within control limits.
- 9. The laboratory control sample (LCS) was within the 80-120% control limits. Refer to the Inorganics Laboratory Control Standards Report.
- 10. The matrix spike (MS) recovery was within the 75-125% control limits. Refer to the Inorganics Accuracy Report.
- 11. The duplicate analysis was within the 20% Relative Percent Difference (RPD) control limits. Refer to the Inorganics Precision Report.
- 12. For the purposes of this report, the data has been reported to the Instrument Detection Limit (IDL). Values between the IDL and the Practical Quantitation Limit (PQL) are acquired in a region of less-certain quantification.

- 13. I certify that this sample data package is in compliance with SOW requirements, both technically and for completeness, other than the conditions detailed above. Release of the data contained in this hard-copy data package has been authorized by the Laboratory Manager or a designee, as verified by the following signature.
- 14. As of January 27, 2001, Recra LabNet Philadelphia became Lionville Laboratory Incorporated. Some forms may still reference Recra LabNet Philadelphia.

Iain Daniels

Deputy Laboratory Manager Lionville Laboratory Incorporated

Bechtel Hanfo	ord Inc.	C	HAIN OF CUST	LOL	YAS	AMPLE	ANAL	YSIS	REC)UES	Γ	BO	0-030-008	Page 1	of <u>i</u> ho
Collector MT Stankovich		Comp Mi	eny Contact ke Stankovich	Te	scpbo 531-7	ac No. 620			Project TREN	t Coordi T, SJ	Mator	Price Code	8L		nrasroand
Project Designation 100 F Area - Pull Protocol	<u>.</u>		ling Location 17-F6						SAF N B00-0	30	1	Air Qualit	y 🗆	21	Days
Shipped To pd 5-14-01	TETALIDA	Fleid EL	Legbook No. -1535-1			COA R607F626	00		Metho F-Z	ocsain	7)			
Shipped To 14-01 THARBERA LIGA	11c Ren	V/U Ottale	e Property No.	R	Ø	10095	9		BHI of	Lading/		No.			، حسد
POSSIBLE SAMPLE HAZ			Preservation	1	P D	Cool 4C	Coal 4C	Non	- 1 '	L id					
1 "			Type of Container		3	B = 0	A *G	∎G	c	OF T					
150ppm			No. of Container(s)	<u> </u>	<u> </u>	1	1	1							
Special Handling and/or Sto PCBs	rage		Volume	60	Apl.	250mŁ	250mL	250m		l Oromit			<u></u>		
	SAMPLE ANAI	LYSIS		89,50 Sr; Wi Carb Tamba	7 47 C	PCBs - 8062	Semi-VDA - S270A (TCL)	See Item (Specie Instructi	l) in Sec	idem (2) in i Sheefad structions.				T	eTÜ
Sample No.	Matrix *	Sample Date	Sample Time						工	1					
B121F5	SOIL	5-14-0				-	<u>س</u>						<u> </u>	<u> </u>	010675
B121F6	SOIL	5-14-0	1 0921			-			+				 		B106 PS
									上						
									\Box						Matrix *
CHAIN OF POSSESSING Relinquished By State Road Real Real Real Real Real Real Real Real	5-14-01/16/0 5-14-01/16/0 751-01/16/0 25 5-16-0 Pub/Time	PRIV	RThorens	Time	793	(i) ic (ii) ic	IAL INSTR		rtrace) (/ sium 127 -165 Sa Sh	D (mples st ipping F	ored in	Ref.# 2/ 5/	the 3728 <u>) [</u> -	10155]	C-Coll SC-Sodiment SC-Sodid S-Sodid S-Sodid N-Wyer O fill A-Ale 175 From Sodid N-Thrane W1-Wipe L-Hund Lipids Y-Thrane W1-Wipe L-Hund V1-Wipe
Reliaguished By Reliaguished By LABORATORY Received By	SI 70 0950 Distribution	Received By	U De	e/Time		-(Kg)	SSAI	mples on	Z)[[lable to relei	pment.	12.7 16.701 16.71 inc	X-cuber
FINAL SAMPLE Disposed M. DISPOSITION	strod						Dispos	xd By					Da	le/Time	

BHI-EE-011 (10/99)

Appendix 5

Data Validation Supporting Documentation

WHC-SD-EN-SPP-002, Rev. 2

INORGANIC ANALYSIS DATA VALIDATION CHECKLIST

VALIDATION LEVEL:	A	В	(3)	D	E
PROJECT: /	OF		DATA PACKAGE	: H138	53
VALIDATOR:	74	LAB: LL	ーエ	DATE: 7/	4/0/
CASE:			SDG: H/	353 '	
		ANALYSES	PERFORMED		
	CLP/GFAA	C CLP/He	□ CLP/Cyunide	0	0
SW-846/ICP	□ 8W-846/GFAA	□ SW-846/Hg	SW-846 Cyanide	0	0
SAMPLES/MATR	11X B/2	IFS B	121F6		
,					
Is technical		documentation	n present? .		
	rative presen		• • • • • • •	E	Fes No 117
		·	-a		
2. HOLDING T					2) No. No.
Are sample ho					Yes No N/

ME 000017

WHC-SD-EN-SPP-002, Rev. 2

INORGANIC ANALYSIS DATA VALIDATION CHECKLIST

3. INSTRUMENT PERFORMANCE AND CALIBRATIONS		
Were initial calibrations performed on all instruments? Yes	No A	N/A
Are initial calibrations acceptable? Yes	No /	N/A
Are ICP interference checks acceptable? Yes	No V	N/A
Were ICV and CCV checks performed on all instruments? Yes	No	N/A /
Are ICV and CCV checks acceptable? Yes	No	N/A
Comments:		<u> </u>
	·	
4. BLANKS		
Were ICB and CCB checks performed for all applicable analyses? Yes	No	(N/A)
Are ICB and CCB results acceptable? Yes	No	NA
Were preparation blanks analyzed? Yes	No	N/A
Are preparation blank results acceptable? Yes	Na	N/A
Were field/trip blanks analyzed? Yes	NO)	N/A
Are field/trip blank results acceptable? Yes	No	(N)A
Comments:		
5. ACCURACY		
Were spike samples analyzed? Yes	No	N/A
Are spike sample recoveries acceptable? Yes	No	N/A
Were laboratory control samples (LCS) analyzed? Yes	No	N/A
Are LCS recoveries acceptable? Yes Comments:	No 	10
	_	
		<u></u>

K Br

WHC-SD-EN-SPP-002, Rev. 2

INORGANIC ANALYSIS DATA VALIDATION CHECKLIST

6. PRECISION		
Were laboratory duplicates analyzed? Yes	No N/A	¥.
Are laboratory duplicate samples RPD values acceptable? (Yes)	No N/	1
Were ICP serial dilution samples analyzed? Yes	No (N/	Ľ
Are ICP serial dilution 4D values acceptable? Yes	No (N/	Y)
Are field duplicate RPD values acceptable? Yes	No (N//	ン
Are field split RPD values acceptable? Yes	No NT	5
Comments:		-
		- -
7. FURNACE AA QUALITY CONTROL		<u>-</u>
Were duplicate injections performed as required? Yes	No N/	A\
Are duplicate injection %RSD values acceptable? Yes	No N/	A
Were analytical spikes performed as required? Yes	No N/	A
Are analytical spike recoveries acceptable? Yes	No N/	A
Was MSA performed as required? Yes	No N/	A
Are MSA results acceptable? Yes	No \ N/	A
Comments:		_/ - -
8. REPORTED RESULTS AND DETECTION LIMITS		-
Are results reported for all requested analyses? (Yes)	No N	'A
Are all results supported in the raw data? Yes	No N	A
Are results calculated properly? Yes	No N	
Do results meet the CRDLs?	No N	/A
Comments:		
		_
		_
		_
	· · · · · · · · · · · · · · · · · · ·	—
		_

000019

Appendix 6

Additional Documentation Requested by Client

Lionville Lababoratory, Inc.

INORGANICS PRECISION REPORT 05/25/01.

CLIENT: TNUHANFORD B00-030 H1353

LVL LOT #: 0105L798

WORK ORDER: 11343-606-001-9999-00

			initial			DILUTION
SAMPLE	SITE ID	ANALYTE	RESULT	REPLICATE	RPD	FACTOR (REP)
			********			******
-001REP	B121F5	Lead, Total	11.1	11.6	4.4	1.0

E'90T 8'99 BISTAR ARKANYO ARKANA CARACTO COORDO STUTICHER STREET SANCTAR VOORS THUOMA TJURES EJUMA ANALYTE di eris elemes SPIKED INITIAL SPIKED

LazoT ,baed

MORK ONDER: 11343-606-001-9999-00 CFIRML: LMOHYMLOKD BOO-030 H7323

100-

FAT FOL #: 0102F138

SYCLOS (SBK)

DIPOLION

INOMONNICE VCCONVCA RESORT 05/25/01

Promatile Lababoratory, Inc.

t'TT 6'65

Lionville Lababoratory, Inc.

INORGANICS NETHOD BLANK DATA SUMMARY PAGE 05/25/01

CLIENT: TNUMANFORD B00-030 H1353

LVL LOT #: 0105L798

WORK ORDER: 11343-606-001-9999-00

					REPORTING	DILUTION
SAMPLE	SITE ID	ANALYTE	result	UNITS	LIMIT	FACTOR
		*******	******			
RLANK1	01L0276-MB1	Lead, Total	0.27	MG/KG	0.26	1.0

Date:

16 July 2001

To:

Bechtel Hanford Inc. (technical representative)

From:

TechLaw, Inc.

Project: 100F Areas - Full Protocol

Subject: Semivolatiles - Data Package No. H1353-LLI (SDG No. H1353)

INTRODUCTION

This memo presents the results of data validation on Summary Data Package No. H1353-LLI prepared by Lionville Laboratory Incorporated (LLI). A list of the samples validated along with the analyses reported and the method of analysis is provided in the following table.

Sample ID	Sample Date	Media	Validation	Analysis
B121F5	5/14/00	Soil	С	See note 1
B121F6	5/14/00	Soil	С	See note 1

^{1 -} Semivolatiles by EPA 8270C .

Data validation was conducted in accordance with the Bechtel Hanford Incorporated (BHI) validation statement of work and the 100 Area Remedial Action Sampling and Analysis Plan (DOE/RL September 2000). Appendices 1 through 5 provide the following information as indicated below:

- Appendix 1. Glossary of Data Reporting Qualifiers
- Appendix 2. Summary of Data Qualification
- Appendix 3. Qualified Data Summary and Annotated Laboratory Reports
- Appendix 4. Laboratory Narrative and Chain-of-Custody Documentation
- Appendix 5. Data Validation Supporting Documentation

DATA QUALITY OBJECTIVES

Holding Times

Analytical holding times were assessed to ascertain whether the holding time requirements were met by the laboratory. The holding time requirements are as follows: Water samples must be extracted within 7 days of the date of sample collection and analyzed within 40 days from the date of extraction.

If holding times are exceeded, but not by greater than two times the limit, all associated sample results are qualified as estimates and flagged "J" for detects and "UJ" for non-detects. If holding times are exceeded by greater than two

times the limit, all associated detectable sample results are qualified as estimates and flagged "J" and all non-detects are rejected and flagged "UR".

Due to the samples arriving at the laboratory at a temperature of 19.8°F, all semi-volatile results were qualified as estimates and flagged "J".

Method Blanks

Method blank analyses are conducted to determine the extent of laboratory contamination introduced through sampling, sample preparation and analysis. At least one acceptable method blank analysis must be conducted for every 20 samples. No contaminants should be present in the method blank. Analytical results for analytes present in any sample at less than five times the concentration of that analyte found in the associated blank are qualified as non-detects and flagged "U". Common laboratory contaminants present in samples at less than ten times the concentration of that analyte found in the associated blank are qualified as non-detects. If a sample result is less than the CRQL and is less than five times (or less than ten times for lab contaminants) the highest associated blank result, the sample result value is raised to the CRQL level and qualified as undetected "U".

All blank results were acceptable.

Field Blanks

No field blanks were submitted for analysis.

Accuracy

Matrix Spike/Matrix Spike Duplicate Recoveries

Matrix spike/matrix spike duplicate analyses are used to assess the analytical accuracy of the reported data and the effect of the matrix on the ability to accurately quantify sample concentrations. Matrix spike/matrix spike duplicate analyses are performed in duplicate using five compounds for which percent recoveries must be within a range of 50-150% or within laboratory control limits. If spike recoveries are outside control limits, detected sample results less than five times the spike concentration are qualified as estimates and flagged "J". Undetected sample results with spike recoveries outside control limits are qualified as estimates and flagged "UJ". Sample results greater than five times the spike concentration require no qualification.

All matrix spike/matrix spike duplicate results were acceptable.

Surrogate Recovery

The analyses of surrogate compounds provide a measure of performance for individual samples. Matrix-specific surrogate compound recovery control windows have been established by the EPA CLP program. If two surrogates of the same class of compounds (base/neutral or acid) are out of control limits, all associated sample results greater than the contract required quantitation limit (CRQL) are qualified as estimates and flagged "J". Sample results less than the CRQL and below the lower control limit are qualified as estimates and flagged "UJ". Sample results less than the CRQL with recoveries above the upper control limit require no qualification. If a surrogate recovery is less than 10%, detects are qualified as estimates and flagged "J" and nondetects are rejected and flagged "UR".

All surrogate results were acceptable.

Precision

Matrix Spike/Matrix Spike Duplicate Samples

Matrix spike (MS)/matrix spike duplicate (MSD) results provide matrix-specific information on the precision of the method for specific target compound classes. Precision is expressed by the relative percent difference (RPD) between the recoveries of duplicate matrix spike analyses performed on a sample. Samples results must be within RPD limits of +/-20%. If RPD values are out of specification and the sample concentration is less than five times the spike concentration, all associated detected sample results are qualified as estimates and flagged "J". If RPD values are out of specification and the sample concentration is greater than five times the spike concentration, no qualification is required.

Due to an RPD of 40%, all 4-nitrophenol, 2-nitrophenol and 2,4-dinitrophenol results were qualified as estimates and flagged "J".

All other matrix spike/matrix spike duplicate results were acceptable.

Field Duplicate Samples

No field duplicates were submitted for analysis.

Analytical Detection Levels

Reported analytical detection levels are compared against the target detection limits (TDLs) to ensure that laboratory detection levels meet the required criteria. All anlaytes exceeded the TDL. Under the BHI statement of work, no qualification is required.

Completeness

Data package No. H1353-LLI (SDG No. H1353) was submitted for validation and verified for completeness. Completeness is based on the percentage of data determined to be valid (i.e., not rejected). The completion percentage was 100%.

MAJOR DEFICIENCIES

None found.

MINOR DEFICIENCIES

Due to the samples arriving at the laboratory at a temperature of 19.8°F, all semi-volatile results were qualified as estimates and flagged "J". Due to an RPD of 40%, all 4-nitrophenol, 2-nitrophenol and 2,4-dinitrophenol results were qualified as estimates and flagged "J". Data flagged 'J' is an estimate, but under the BHI validation SOW, the data may be usable for decision-making purposes. All other validated results are considered accurate within the standard error associated with the methods.

All analytes exceeded the TDL. Under the BHI statement of work, no qualification is required.

REFERENCES

BHI, MRB-SBB-A23665, Validation Statement of Work, Bechtel Hanford Incorporated, September 5, 1997.

DOE/RL-96-22, Rev. 2, 100 Area Remedial Action Sampling and Analysis Plan, U.S. Department of Energy, September 2000.

Appendix 1

Glossary of Data Reporting Qualifiers

Qualifiers which may be applied by data validators in compliance with the BHI validation SOW are as follows:

- Indicates the compound or analyte was analyzed for and not detected in the sample. The value reported is the same quantitation limit corrected for sample dilution and moisture content by the laboratory.
- UJ Indicates the compound or analyte was analyzed for and not detected in the sample. Due to a minor QC deficiency identified during the data validation, the associated quantitation limit is an estimate.
- J Indicates the compound or analyte was analyzed for and detected. Due to a minor QC deficiency identified during the data validation, the associated quantitation limit is an estimate.
- R Indicates the compound or analyte was analyzed for, detected, and due to an identified major QC deficiency, the data are unusable.
- UR Indicates the compound or analyte was analyzed for and not detected in the sample. Additionally, the data is unusable due to an identified major QC deficiency.
- NJ Indicates presumptive evidence of a compound at an estimated value.

 The data may not be valid for some specific applications (i.e., usable for decision-making purposes).
- Indicates presumptive evidence of a compound. The data may not be valid for some specific applications usable for decision-making purposes).

Appendix 2
Summary of Qata Qualification

DATA QUALIFICATION SUMMARY

SDG: H1353	REVIEWER: TLI	DATE: 7/16/01	PAGE_1_OF_1_
COMMENTS:			
COMPOUND	QUALIFIER	SAMPLES AFFECTED	REASON
4-nitrophenol 2-nitrophenol 2,4-dinitrophenol	J	All	RPD
All	J	All	Sample preservation

Appendix 3

Qualified Data Summary and Annotated Laboratory Reports

Project: BECHTEL-HANFORD		-	***]											
Laboratory: Lionville Laboratory in	C.			1											
Case:	SDG: 1	11353													
Sample Number		B121F5		B121F6											
Remarks	···	1		T										T	
Sample Date		5/14/01		5/14/01											
Extraction Date		5/18/01		5/18/01											
Analysis Date		5/25/01		5/25/01										·	
Semivolatile (8270C)	CRQL				_	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q
Phenol	330			1600					<u> </u>	<u> </u>					T_{-}
bis(2-Chioroethyl)ether	330			1600											
2-Chlorophenol	330			1600				, , , , , , , , , , , , , , , , , , ,					匚		
1,3-Dichlorobenzene	330			1600		L							<u> </u>		
1,4-Dichlorobenzene	330			1600				1					<u> </u>		
Benzyi Alcohol	330			1600							1_		L.	<u> </u>	
1,2-Dichlorobenzene	330			1600					<u> </u>		↓	<u> </u>	<u> </u>		
2-Methylphenol	330			1600				<u> </u>		<u> </u>			<u> </u>		
bis(2-Chlorolsopropyl)ether	330			1600				<u> </u>	<u> </u>	<u> </u>	 		<u> </u>	ļ	
4-Methylphenol	330			1600					<u> </u>		ـــــــ	<u> </u>	ـــــ		
N-Nitroso-di-n-propylamine	330	1700		1600		<u> </u>			<u> </u>		<u>↓</u>		┞-	ļ	
Hexachloroethane	330			1600					<u> </u>				<u> </u>		
Nitrobenzene	330	1700		1600					<u> </u>		↓		<u> </u>		
Isophorone	330			1600				<u> </u>	<u> </u>	 	↓		 		
2-Nitrophenol	330			1600		<u> </u>		<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>		
2,4-Dimethylphenol	330			1600		<u> </u>			ـــــ		┞	<u> </u>	 		
Benzoic acid	330	1700		1600					<u> </u>		<u> </u>	ļ	<u> </u>	<u> </u>	 _
bis(2-Chloroethoxy)methane	330			1600		<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	↓	<u> </u>	┡-	<u> </u>	——
2,4-Dichlorophenol	330	1700		1600					! —	<u> </u>	ــــــــــــــــــــــــــــــــــــــ	<u> </u>	<u> </u>	 	+
1,2,4-Trichlorobenzene	330			1600		<u> </u>		ļ <u>.</u>	<u> </u>	ļ	↓		ļ	ļ	
Naphthalene	330			1600		<u> </u>		 		 	↓	<u> </u>	╄-		—
4-Chloroaniline	330			1600				 _	↓_		↓_	 	 		4
Hexachlorobutadlene	330			1600		<u> </u>		 -	₩		—	 	├		$+\!-\!\!\!-$
4-Chloro-3-methylphenol	330			1600				 _	ـــ	<u> </u>	-		 	<u> </u>	
2-Methylnaphthalene	330			1600					 		↓	<u> </u>	—-		┦
Hexachlorocyclopentadiene	330			1600					ļ	<u> </u>	↓	<u> </u>	 -		-
2,4,6-Trichlorophenol	330			1600				 	_	<u> </u>	↓ —	 	₩-		┼
2,4,5-Trichiorophenoi	800			4100		<u> </u>		 _	↓	 	₩	 	₩-	<u> </u>	4
2-Chioronaphthaiene	330			1600		 _	 -	<u> </u>	 	<u> </u>	╂—	₩	—-	 	+
2-Nitroaniline	800			4100		<u> </u>		<u> </u>	╄	<u> </u>	↓	<u> </u>	 	<u> </u>	4
Dimethylphthalate	330			1600		<u> </u>		↓	1	ļ	 	 	 _ _		
Acenaphthylene	330			1600				<u> </u>	 	ļ	↓	ļ	⊢-		4
2.6-Dinitrotoluene	330	1700	UJ	1600	M	L.,		<u></u>	<u> </u>	<u> </u>	1	<u>L</u>	Ц_	<u> </u>	

^{*-} The reported detection limit is above the PQL/CRQL

Project: BECHTEL-HANFORD]											
Laboratory: Lionville Laboratory in	C,			1											
Case:	SDG: I	SDG: H1353													
Sample Number		B121F5		B121F6				1		T				T	
Remarks		{								 		T			
Sample Date		5/14/01		5/14/01				1							
Extraction Date		5/18/01		5/18/01				1							
Analysis Date		5/25/01		5/25/01]		 					
Semivolatile (8270C)	CRQL	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q	Result	TQ_	Result	Q
3-Nitroaniline	800	4200	W	4100	IJ		7				1		Τ-		1
Acenaphthene	330	1700	UJ	1600	IJ		\top			<u> </u>					
2,4-Dinitrophenol	800	4200	UJ	4100	IJ				1	1		 			1
4-Nitrophenol	800	4200		4100									T^-		1
Dibenzofuran	330			1600							T	T	T^-		1
2,4-Dinitrotoluene	330	1700		1600			$oldsymbol{oldsymbol{oldsymbol{\Box}}}$		Ī		1		Τ-	1	1
Diethylphthalate	330	1700		1600							П		\Box		
4-Chlorophenyl-phenyl ether	330	1700		1600					İ						1
Fluorene	330	1700		1600							Γ		Γ^{-}		1
4-Nitroaniline	800	4200		4100											T
4,6-Dinitro-2-methylphenol	800	4200		4100											
N-Nitrosodiphenylamine	330	.1700		1600			L								\top
4-Bromophenyl-phenyl ether	330	1700		1600							Ī				
Hexachlorobenzene	330	1700		1600											
Pentachlorophenol	800	4200		4100									L^{-}		
Phenanthrene	330	1700		1600			1_	<u> </u>			L	<u></u>			
Anthracene	330	1700		1600							l				$\mathbf{I}_{}$
Di-n-butylphthalate	330	1700		1600											
Fluoranthene	330	1700		1600							<u> </u>				
Pyrene	330	1700		1600											
Butylbenzylphthalate	330	1700		1600			Ц	<u> </u>	<u> </u>		<u> </u>		<u> </u>		
3,3'-Dichiorobenzidine	330	1700		1600			\bot						L^{-}		
Benzo(a)anthracene	330	1700		1600	1			<u> </u>	<u> </u>			<u> </u>			
Chrysene	330	1700		1600			<u> </u>					<u> </u>			
bis(2-Ethylhexyl)phthalate	330	1700		1600			4_		<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>		<u> </u>
Di-n-octylphthalate	330	1700		1600		<u> </u>	4—	<u> </u>	!			<u> </u>	<u> </u>		
Benzo(b)fluoranthene	330	1700		1600			4		<u> </u>		$ldsymbol{ldsymbol{ldsymbol{eta}}}$	<u></u>			
Benzo(k)fluoranthene	330	1700		1600			↓	<u> </u>					<u> </u>		
Benzo(a)pyrene	330	1700		1600			4_		·		<u>L</u>		L		
Indeno(1,2,3-cd)pyrene	330	1700		1600		٠			<u> </u>				<u> </u>		
Dibenz(a,h)anthracene	330	1700		1600				ļ <u> </u>			<u> </u>	<u> </u>	<u> </u>		
Benzo(g,h,i)perytene	330	1700	W	1600	UJ]								l		

^{* -} The reported detection limit is above the PQL/CRQL

Lionville Laboratory, Inc.

Client: TNUHAMFORD B00-030 H1353

RFW Batch Number: 0105L798

Semivolatiles by GC/MS, HSL List

Report Date: 05/29/01 11:53

Page: la

Work Order: 11343606001

Cust ID: B12175 B12176 B121F6 B121P6 SRLEWS BS SELECT RFW#: 001 002 002 MS 002 MSD 01LE0591-MB1 01LE0591-MB1 Sample Information SOTI. SOIL SOLL SOIL Matrix: SOIL SOIL D. F. : 5.00 5.00 5.00 5.00 1.00 1.00 Units: ug/Kg ug/Kg uq/Kq ug/Kg uq/Ka ua/Ka Nitrobenzene-d5 67 ł 63 1 61 ł 72 ¥ 89 * 82 **A2** 2-Fluorobiphenyl 72 87 Surrogate 77 Ł 69 * Ł 76 Ł ł Terphenvl-d14 82 113 105 Recovery Phenol-d5 65 79 71 56 59 2-Fluorophenol 62 57 55 62 73 64 47 49 60 95 92 2,4,6-Tribromophenol 54 75 330 Phenol 1700 1600 U 60 67 bis (2-Chloroethyl) ether 330 1700 IJ 1600 Ū 1600 U 1600 U 330 72 2-Chlorophenol 1700 U 1600 Ū 58 ¥ 64 ¥ 330 1.3-Dichlorobenzene U 1600 Ħ 330 U 330 Ħ 1700 U 1600 U 1600 1.4-Dichlorobenzene 74 1700 57 62 330 U 1600 n Ł U 330 TI 1600 U 330 1.2-Dichlorobenzene 1700 1600 u 1600 2-Methylphenol____ 330 1600 330 T П 1700 1600 Ħ 1600 330 2,2'-oxybis(1-Chloropropane) 1700 1600 U 1600 П 1600 17 330 U u 3- and/or 4-Methylphenol 1700 Ħ 1600 U 330 Ħ 330 u 1600 1600 82 79 330 U N-Nitroso-di-n-propylamine 1700 1600 T 64 ł Ł n 330 IJ 330 1700 IJ 1600 U 1600 tī Hexachloroethane_____ T) 1600 Ħ 330 u 330 1700 Ħ 1600 11 1600 1600 IJ Nitrobenzene 1700 U 1600 П 1600 U 1600 U 330 330 U Isophorone Ħ 330 U 330 U 1700 1600 11 1600 1600 11 2-Nitrophenol U 330 U 330 U 1700 1600 IJ 1600 1600 IJ 2,4-Dimethylphenol_ 330 U 330 U Ħ 1600 11 bis (2-Chloroethoxy) methane 1700 TT 1600 11 1600 2,4-Dichlorophenol_ 1700 U 1600 Ħ 1600 IJ 1600 Ħ 330 U 330 Ħ 65 330 u 82 ¥ 1,2,4-Trichlorobenzene 1700 1600 77 61 Ł 330 U 330 U 1700 IJ U 1600 U Naphthalene 1600 1600 1600 1700 П 1600 Ħ 330 TT 330 u 4-Chloroaniline 1600 17 Hexachlorobutadiene 1700 Ħ 1600 TT 1600 1600 11 330 U 330 U 4-Chloro-3-methylphenol 330 U 81 ł 1700 U 1600 U 59 64 ł U U U 330 U 330 U 2-Methylnaphthalene 1700 1600 1600 1600 330 330 Ū Hexachlorocyclopentadiene 1700 U 1600 TI 1600 1600 77 U U U U U 2,4,6-Trichlorophenol 1700 1600 U 1600 U 1600 330 330 2,4,5-Trichlorophenol 4200 U 4100 U Ħ 4100 Ħ 830 U 830 U 4100 *= Outside of EPA CLP QC limits.

RFW Batch Number: 01051798 Cust ID:	B121F5	THANFORD B00-030 B121F6	B12176	Order: 1134 B121F6	SBLEWE	Page: 1b SBLEWE BS	
					5-2-0		
RFW#:	001	002	002 MS	002 MSD	01LE0591-MB1	01LE0591-MB	
2-Chloronaphthalene	1700 U	1600 U] 1600 U	1600 U	330 U	330	
	4200 U	4100 U	4100 U	4100 U	830 U	830	
2-Nitroaniline	1700 U	1600 U	1600 U	1600 U	ט 330	330	
	1700 U	1600 U	ט 1600	1600 U	330 U	330	
cenaphthylene	1700 U	1600 0	ט 1600	1600 U	330 U	330	
-Nitroaniline	4200 U	4100 U	4100 U	4100 U	830 U	830	
cenaphthene	1700 U	1600 ט	71 %	77 %	330 U	87	
,4-Dinitrophenol	4200 U	4100 U	4100 U	4100 U	830 U	830	
-Nitrophenol	4200 U	4100 U	37 %	58 🕏	830 U	86	
ibenzofuran	1700 U	1600 บ	1600 U	1600 U	330 U	330	
,4-Dinitrotoluene	1700 U	1600 ປ	53 %	69 🛊	330 U	89	
iethylphthalate	1700 U	1600 U	1600 U	1600 U	330 U	330	
iethylphthalate	. 1700 U	1600 U	1600 U	1600 U	330 U	330	
luorene	1700 U	1600 U	1600 U	1600 U	330 U	330	
Nitroaniline	4200 U	4100 U	4100 U	4100 U	830 U	830	
6-Dinitro-2-methylphenol	4200 U	4100 U	4100 U	4100 U	830 U	830	
Nitrosodiphenylamine (1)	1700 U	1600 U	1600 U	1600 U	330 U	330	
-Bromophenyl-phenylether	1700 U	1600 U	1600 U	1600 U	330 U	330 1	
exachlorobenzene	1700 U	1600 U	1600 U	1600 U	330 U	330 1	
entachlorophenol	4200 U	4100 U	67 %	75 🕏	830 Ū	87	
nenanthrene	1700 บ	1600 U	1600 U	1600 ป	330 U	330 1	
nthracene	1700 บ	1600 U	1600 U	1600 U	330 U	330	
arbazole	1700 U	1600 U	1600 U	1600 U	330 U	330 1	
i-n-butylphthalate	1700 U	1600 U	1600 U	100 J	330 U	330 (
luoranthene	1700 ป	1600 U	1600 U	1600 U	330 U	330 1	
	1700 U	1600 U	78 %	79 🛊	330 U	96	
rene itylbenzylphthalate	1700 U	1600 U	1600 U	1600 U	330 U	330 1	
3'-Dichlorobenzidine	1700 U	1600 U	1600 U	1600 U	330 U	330 (
enzo(a)anthracene	1700 U	1600 U		₹ 1600 U	330 Ū	330 t	
rysene	1700 U	1600 U	1600 U	1600 U	330 0	330 t	
s(2-Ethylhexyl)phthalate	1700 U	1600 U	1600 U	1600 U	330 🗓	330 t	
-n-octyl phthalate	1700 U	1600 U	1600 U	,	330 T	330 (
nzo(b) fluoranthene	1700 U	1600 U	1600 U €		330 U	330 t	
nzo(k) fluoranthene	1700 U	, 1600 U	1		330 U	330 t	
nzo(a) pyrene	1700 U	1600 U	1600 0	1600 U	330 U	330 0	
ideno (1,2,3-cd) pyrene	1700 U	1600 U	1600 U	1600 U	330 0	330 U	
benz (a, h) anthracene	1700 U	1600 U	1600 U	1600 U	330 Ω		
enzo(g,h,i) perylene	1700 U	1600 U	1600 D				
1) - Cannot be separated from Dipho		*= Outside of B		1600 U	330 U	330 0	

Appendix 4

Laboratory Narrative and Chain-of-Custody Documentation

Client: TNU-HANFORD B00-030

RFW #: 0105L798

SDG/SAF #: H1353/B00-030

W.O. #: 11343-606-001-9999-00 Date Received: 05-17-2001

SEMIVOLATILE

Two (2) soil samples were collected on 05-14-2001.

The samples and their associated QC samples were extracted on 05-18-2001 and analyzed according to criteria set forth in Lionville Laboratory OPs based on SW 846 Method 8270C for TCL Semivolatile target compounds on 05-23,25-2001.

The following is a summary of the QC results accompanying the sample results and a description of any problems encountered during their analyses:

- 1. The cooler temperature (19.8° C) upon receipt has been recorded on the chain-of-custody.
- 2. The samples were extracted and analyzed within required holding times.
- Non-target compounds were not detected in the samples.
- 4. Both samples required a 5-fold dilution due to dark and viscous nature of the extracts.
- 5. All surrogate recoveries were within EPA QC limits.
- 6. All blank spike recoveries were within EPA QC limits.
- 7. All matrix spike recoveries were within EPA QC limits.
- 8. Internal standard area criteria were not met for the method blank 01LE0591-MB1 and its associated blank spike. The GC/MS instrument was inspected for possible malfunction and was judged to be functioning properly and all surrogate and spike recoveries were within QC limits; consequently, the sample was not reanalyzed.
- 9. "I certify that this sample data package is in compliance with SOW requirements, both technically and for completeness, other than the conditions detailed above. Release of the data contained in this hard-copy data package has been authorized by the Laboratory Manager or a designee, as verified by the following signature."
- 10. As of January 27, 2001, Recra LabNet Philadelphia became Lionville Laboratory Incorporated. Some Forms may still reference Recra LabNet Philadelphia.

. Michael Taylor

President

Lionville Laboratory Incorporated

som\gorup\data\bne\tou-hanford-0105-798.doc

The results presented in this report relate only to the analytical testing and conditions of the samples at receipt and during storage. All pages of this report are integral parts of the samples at receipt and during storage. All pages of this report are integral parts of the samples at receipt and during storage. All pages of this report are integral parts of the samples at receipt and during storage. All pages of this report are integral parts of the samples at receipt and during storage. All pages of this report are integral parts of the samples at receipt and during storage.

000015

Bechte	Hanford Inc.	C	HAIN OF CUS	TODY	/SAMPL	E ANAL	YSIS	REQUEST		B0	0-030-008	Page 1	of 1
Collector MT Stankovich		Comp Mil	eny Contact ce Stankovich	Telep 53	hone No. -7620			Project Coordi TRENT, SJ	ster	Price Code	8L	Data T	bracease.
Project Designation 100 F Area - Pull 1			ling Location 17-F6					SAF Ne. B00-030		Air Qualit	y 🗆	21	Days
Ice Chest No.	-METALDA	I Field	Legheck No. -1\$35-1		COA R607F62	2600		Method of Ship		j			
lombber to . A	Lienville Ren		Property No.	RO		59		Bill of Lading/					
POSSIBLE SAMP	'LE HAZARDS/REMARKS		Preservation	*	Course	Coel 4C	Non	1150				1	
150p	pm		Type of Container		Bo	A =G	•0	COP					
Special Handling a PCBs			No. of Container(s) Volume	60eL		250ml.	250=	L 100mL					<u> </u>
	SAMPLE ANAI	LYSIS		Service 19,90 - To Se, Manda Contact Total		Sami-VOA - 8276A (TCL)	See item (Special Instruction	a special				T	ето
Sample No). Matrix *	Sample Date	Sample Time										
B121F5	SOIL	5-14-0	0930			"	~		-				010675
8121F6	SOIL.	5-14-0	1 0921		+-	-					<u> </u>	 .	10106 15
<u></u>					 	1							 -
					-	 		-			1		1
Kol 20	5-14-01/1610 5-14-01/1610 600/1700 Destrict Of 3 6728 5-16-0	RUV	ETNOVEN D	4-01 // 4-01 // 	(6/6 (I))	CIAL INSTR ICP Metals - 60 Games Species	IOA (Supe	NS (troo) (Associa, Carlos class 137, Catalog -15 - DI	, Recept		F-18-01 	1331	Matrix 9 9-6ali 88-6aliana 90-6alia 8-dalian W- Weter 0-08 A-Alir 18-Onen Salida
allogo tallogo	SIZOL 0950 Day/Theo Day/Theo		navet 5/17/0	te/(fine) 1 09 te/fine	50	4 Kg		Shipping F Collector of	acility ot avai	Ref.# 2 91 on 5 //4 // ilable to relea	O./. equish ipment.	RT 671	DL-Duan Liquids To Times Wi-Who L-Liquid Vo-Vapatellus X-Other
LABORATORY SECTION	Received By			1	ide						Dete	/Time	
PENAL SAMPLE I	Dispuid Method					Dispos	ed By				Des	e/Time	

Appendix 5

Data Validation Supporting Documentation

GC/MS ORGANIC DATA VALIDATION CHECKLIST

VALIDATION LEVEL:	А	В	0	D	E
PROJECT: /	OUF		DATA PACKAGE	: # 13:	53
VALIDATOR:	TLI	LAB: LL		DATE: 7/14	/0/
CASE:			SDG: H	1353	
		ANALYSES	PERFORMED		
CLP Volatiles	SW-846 8240 (cap column)	SW-846 8260 (packed column)	CLP Semivolatiles	Z 6W-846 8270 cap column)	SW-846 (packed column)
SAMPLES/MATE	1X B12	LIFS	B121F	(
			,		
I. DATA PACK Is technical Is a case nar Comments:	rative preser	documentation	present? .	1	(es No N/A
2. HOLDING TARE sample ho	olding times a	acceptable?		8°F J	No N/A

GC/MS ORGANIC DATA VALIDATION CHECKLIST

3. INSTRUMENT TUNING AND CALIBRATION		Γ
Is the GC/MS tuning/performance check acceptable? Yes	No	NA
Are initial calibrations acceptable? Yes	No	N/A
Are continuing calibrations acceptable? Yes	No	N/A
Comments:	<u> </u>	$\underline{\vee}$
	<u> </u>	
4. BLANKS		
Were laboratory blanks analyzed? (Yes)	No	N/A
Are laboratory blank results acceptable? Yes	No	N/A
Were field/trip blanks analyzed? Yes	No	N/A
Are field/trip blank results acceptable? Yes	No	MA
Comments:		$\underline{\bigcirc}$
5. ACCURACY		
Were surrogates/System Monitoring Compounds analyzed? (Yes)	No	N/A
Are surrogate/System Monitoring Compound recoveries acceptable? Ves	No	N/A
Were MS/MSD samples analyzed? Yes	No	N/A
Are MS/MSD results acceptable?	No	N/A
Comments:		
,	·	
		
		

A 200029

GC/MS ORGANIC DATA VALIDATION CHECKLIST

6. PRECISION		
Are MS/MSD RPD values acceptable?	Yes	No NA
Are field duplicate RPD values acceptable?	Yes	No (N/A)
Are field split RPD values acceptable?	Yes	No NA
Comments: 4 hitrorule - T/UT		
2 11.		
2,4 dintro phol		
7. SYSTEM PERFORMANCE		
Were internal standards analyzed?	Vas	No NA
Are internal standard areas acceptable?		No N/A
Are internal standard retention times acceptable?		No N/A
Comments:	, 163	110 (1/)
8. COMPOUND IDENTIFICATION AND QUANTITATION		
Is compound identification acceptable?	. Yes	No M/A
Is compound quantitation acceptable?	. Yes	No (N/A/
9. REPORTED RESULTS AND QUANTITATION LIMITS		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
Are results reported for all requested analyses?) No N/A
Are all results supported in the raw data?		
Do results meet the CRQLs?		
Has the laboratory properly identified and coded all TIC? Comments:	. Yes ——	No (N/A)

TNU	- <i>HA</i>	150-6	SAF#	B00-0	>30)	Refrig	oralor #		T	13	1 <u>3</u>]	ΤΤΤ	 	ाड इ	Τ-	 	<u></u>			
inal Pro	oj. Sem	pling Date					#Tves	Container	Liquid													
at #	127	3-60	<u>e-001-9</u>	999-00					Bolld		146	146				IAG						
et Contr			<u> </u>	· · · ·			Volum		Liquid		h.~		<u> </u>				<u> </u>	[
We Lab	orefory	Project Man	oger (2)				-		Solid	-	920	250	-			220	·			 		
300	<u> </u>	Del _570	TAT _	31 Gard	-		Present	retives		 	080	ANIC	1	 -		1036	ORG	ļ		 		
ec'd	5:1	701	. Date Due	ر 4-7-01			ANALI	rses	-	ğ		100	ę			100 M	₹					
			····	<u> </u>	M			T	T			<u> </u>	T	Llon	ville La	borate	ory Ue	e Only	<u></u>	1		
Ament Id	Lab 20		Client ID/Descrip	llon	Ch	DC IOMATI IV)	Matrix	Date Collected	Time Collected		ASSAN	अस्टि अस्टि				MPB.TO						
dge lar	201	8121	£5				S	5/14/01	0930		Ĭ	Ĭ			1	Ť			\dashv			コ
	202	1	6		 		1		0921						<u> </u>	· ·						\neg
				in the second					137	 												\neg
n tour								1 1												$\neg \uparrow$		\neg
				A SHEET SHOW							: :											
									4 4 1													
						11	.2												\Box I			
								, Y			-											
												-					`					
			· · · · · · · · · · · · · · · · · · ·																			
netructi	ione: (2052	00:030			DATE	REVISION	es:									ı	lonville	Lebor	włory U	lee Only	
		atrix c						2 3 4								1) H Alt (2) 27 57 Co 4)	Receive ndition (Semples	d in Go	od N	1) Pr Pack 2) Ui Pack 3) Pr	resent of tage	Out or on O or or or

Date: 16 July 2001

To: Bechtel Hanford Inc. (technical representative)

From: TechLaw, Inc.

Project: 100F Areas - Full Protocol

Subject: PCB - Data Package No. H1353-LLI (SDG No. H1353)

INTRODUCTION

This memo presents the results of data validation on Summary Data Package No. H1353-LLI prepared by Lionville Laboratory Inc. (LLI). A list of the samples validated along with the analyses reported and the method of analysis is provided in the following table.

Sample ID	Sample Date	Media	Validation	Analysis
B121F5	5/14/01	Soil	С	PCBs by 8082
B121F6	5/14/01	Soil	С	PCBs by 8082

Data validation was conducted in accordance with the Bechtel Hanford Incorporated (BHI) validation statement of work and the 100 Area Remedial Action Sampling and Analysis Plan (DOE/RL-96-22, September 2000). Appendices 1 through 6 provide the following information as indicated below:

Appendix 1. Glossary of Data Reporting Qualifiers

Appendix 2. Summary of Data Qualification

Appendix 3. Qualified Data Summary and Annotated Laboratory Reports

Appendix 4. Laboratory Narrative and Chain-of-Custody Documentation

Appendix 5. Data Validation Supporting Documentation

DATA QUALITY PARAMETERS

Holding Times

Sample data were assessed to ascertain whether the holding time requirements were met by the laboratory. The holding time requirements are as follows: Soil samples must be extracted within 14 days of the date of sample collection and analyzed within 40 days from the date of extraction.

If holding times are exceeded by less than two times the limit, all associated sample results are qualified as estimates and flagged "J" for detects and "UJ" for non-detects. If holding times are exceeded by greater than two times the limit, all

associated detected sample results are qualified as estimates and flagged "J" and all non-detects are rejected and flagged "UR".

Due to the samples arriving at the laboratory at a temperature of 19.8°F, all PCB results were qualified as estimates and flagged "J".

Method Blank

Method blank analyses are performed to determine the extent of laboratory contamination introduced through sampling, sample preparation or analysis. At least one method blank analysis must be conducted for every 20 samples. Method blanks should not contain target compounds at a concentration greater than target detection limit (TDL). If target compounds are present, sample results less than five times the blank concentration are qualified as undetected and flagged "U". If the sample result is less than five times the blank concentration and less than TDL, the result is qualified as undetected and elevated to the TDL.

All method blank target compound results were acceptable.

Field Blanks

No field blanks were submitted for analysis.

Accuracy

Matrix Spike

Matrix spike analyses are used to assess the analytical accuracy of the reported data and the effect of the matrix on the ability to accurately quantify sample concentrations. Matrix spike analyses are performed in duplicate and must be within control limits of 70% to 130%. If spike recoveries are outside control limits, detected sample results less than five times the spike concentration are qualified as estimates and flagged "J". Non-detected sample results with spike recoveries outside control limits are qualified as estimates and flagged "UJ". Sample results greater than five times the spike concentration require no qualification.

All matrix spike results were acceptable.

Surrogate Recovery

The analysis of surrogate compounds provides a measure of performance for individual samples. Matrix-specific surrogate compound recovery control windows have been established by the laboratory. When a surrogate compound recovery is outside the

control window, all positively identified target compounds associated with the unacceptable surrogate recoveries are qualified as estimates and flagged "J". Non-detected compounds with surrogate recoveries less than the lower control limit are qualified as having an estimated detection limit and flagged "UJ". Non-detected compounds with surrogate recoveries above the upper control limit require no qualification.

All surrogate recovery results were acceptable.

Precision

Matrix Spike/Matrix Spike Duplicate Samples

Matrix spike/matrix spike duplicate results provide matrix-specific information on the precision of the method for specific target compound classes. Precision is expressed as the relative percent difference (RPD) between the recoveries of duplicate matrix spike analyses performed on a sample. For soil samples, results must be within RPD limits of plus/minus 30%. If RPD values are out of specification and the sample concentration is less than five times the spike concentration, all associated detected sample results are qualified as estimates and flagged "J". If RPD values are out of specification and the sample concentration is greater than five times the spike concentration, no qualification is required.

All matrix spike/matrix spike duplicate precision results were acceptable.

Field Duplicate Samples

No field duplicates were submitted for analysis.

Analytical Detection Levels

Reported analytical detection levels are compared against the 100 Area TDLs to ensure that laboratory detection levels meet the required criteria. The reported detection limit was exceeded for all undetected aroclor-1221 results. Under the BHI statement of work, no qualification is required.

Completeness

Data Package No. H1353-LLI (SDG No. H1353) was submitted for validation and verified for completeness. Completeness is based on the percentage of data determined to be valid (i.e., not rejected). The completion percentage was 100%.

MAJOR DEFICIENCIES

None found.

MINOR DEFICIENCIES

Due to the samples arriving at the laboratory at a temperature of 19.8°F, all PCB results were qualified as estimates and flagged "J". Data flagged "J" is an estimate, but under the BHI validation SOW, the data may be usable for decision-making purposes. All other validated results are considered accurate within the standard error associated with the methods.

The reported detection limit was exceeded for all undetected aroclor-1221 results. Under the BHI statement of work, no qualification is required.

REFERENCES

BHI, MRB-SBB-A23665, *Validation Statement of Work*, Bechtel Hanford Incorporated, September 5, 1997.

DOE/RL-96-22, Rev. 2, 100 Area Remedial Action Sampling and Analysis Plan, U.S. Department of Energy, September 2000:

Appendix 1 Glossary of Data Reporting Qualifiers

Qualifiers which may be applied by data validators in compliance with the procedures herein are as follows:

- Indicates the compound or analyte was analyzed for and not detected in the sample. The value reported is the sample quantitation limit corrected for sample dilution and moisture content by the laboratory.
- Indicates the compound or analyte was analyzed for and not detected in the sample. Due to a minor QC deficiency identified during the data validation, the associated quantitation limit is an estimate.
- Indicates the compound or analyte was analyzed for and detected. Due to a minor QC deficiency identified during the data validation, the associated quantitation limit is an estimate.
- R Indicates the compound or analyte was analyzed for, detected, and due to an identified major QC deficiency, the data are unusable.
- UR Indicates the compound or analyte was analyzed for and not detected in the sample. Additionally, the data is unusable due to an identified major QC deficiency.
- Indicates presumptive evidence of a compound at an estimated value. The data may not be valid for some specific applications (i.e., usable for decisionmaking purposes).
- N Indicates presumptive evidence of a compound. The data may not be valid for some specific applications (i.e., usable for decision-making purposes).

Appendix 2

Summary of Data Qualification

DATA QUALIFICATION SUMMARY

SDG: H1353	REVIEWER: TLI	DATE: 7/16/01	PAGE_1_0F_1_
COMMENTS:			·
COMPOUND	QUALIFIER	SAMPLES AFFECTED	REASON
All	J	All	Sample preservation

Appendix 3

Qualified Data Summary and Annotated Laboratory Reports

Project: BECHTEL	-HANFO	ORD		1																	
Laboratory: LLi				1																	
Case	SDG:	H1353		1																	
Sample Number		B121F5		B121F6								T				7		Γ		<u> </u>	
Remarks																					
Sample Date		5/14/01		5/14/01											<u> </u>	<u> </u>					
PCB	POL		Q			Result	à	Result	Q	Result	Q	Result	Q.	Result	Q	Result	Q	Result	Q	Result	Q
Arocior-1016	50		เกา	33	IJ		<u> </u>														7
Aroclor-1221	50		W		IJ						L								1		†
Aroclor-1232	50		W		IJ														1		1
Aroctor-1242	50		JW		IJ						L^{-}								1		1
Arocior-1248	50		IJ		W						L	[
Aroclor-1254	50		W		W										Т				T		1
Arodor-1260	50	33	w	33	W											1			T		\top
	<u> </u>					<u> </u>				L	Ľ						Ţ		T-		1
																				·	\Box
													T								1
				[T		
												[Ī	1		1
											Ľ										\Box
	Γ																				1
							Ĺ				L^{T}										1 -
									1		L".	ł	1		Ι				L^{-}		T^{-1}
																l			Ι		T
									<u> </u>										L^{-}		\Box
																					\Box
													l .								\Box
																					T
											L_						I		•	_	\Box
	T		[·										L		1						
					Γ				Γ.]]									\sqcap
																			Γ		П
	T-"		\Box								\Box				T		T .		1		1
													•								

Aroclor-1260

Lionville Laboratory, Inc.

PCBs by GC

Report Date: 05/30/01 08:35 Client: TNUHANFORD B00-030 H1353 Work Order: 11343606001 Page: RFW Batch Number: 0105L798 Cust ID: B121F5 B121F5 B121F5 B121F6 PBLKFA PBLKFA BS 001 MS 001 MSD 002 01LE0587-MB1 01LE0587-MB1 Sample 001 RFW#: SOIL SOIL SOIL SOIL SOIL Information SOIL Matrix: 1.00 1.00 1.00 1.00 1.00 1.00 D.F.: Units: UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG 85 % 82 % 15 * % 82 % 82 Surrogate: Tetrachloro-m-xylene 87 87 87 Ł 87 * 94 Decachlorobiphenyl 94 32 U 34 U 33 U 33 Ū U 33 TT Aroclor-1016 33 65 U 67 U 67 U 67 U 67 U Aroclor-1221 U 67 Aroclor-1232 U 32 U 34 U 33 U 33 U 33 U 33 33 U 33 U 33 U Aroclor-1242 33 U 32 U 34 U 33 U 32 U 34 U 33 U 33 U 33 U Aroclor-1248 33 U 33 U 75 33 U 83 ŧ 77 % Aroclor-1254

32 U

34 U

33 U

33 U

33 U

33 U

K 7/16/01

U= Analyzed, not detected. J= Present below detection limit. B= Present in blank. NR= Not reported. NS= Not spiked. % = Percent recovery. D= Diluted out. I= Interference. NA= Not Applicable. *= Outside of EPA CLP QC

Appendix 4

Laboratory Narrative and Chain-of-Custody Documentation

Analytical Report

Client: TNU HANFORD B00-030

LVL#: 0105L798

SDG/SAF#: H1353/B00-030

W.O.#: 11343-606-001-9999-00

Date Received: 05-17-01

PCB

The set of samples consisted of two (2) soil samples collected on 05-14-01.

The samples and their associated QC samples were extracted on 05-18-01 and analyzed according to Lionville Laboratory OPs based on SW846, 3rd Edition procedures on 05-24-01. The extraction procedure was based on method 3540 and the extracts were analyzed based on method 8082 for Aroclors only.

The following is a summary of the QC results accompanying the sample results and a description of any problems encountered during their analyses:

- 1. The cooler temperature has been recorded on the chain-of-custody.
- 2. All required holding times for extraction and analysis have been met.
- 3. The samples and their associated QC samples received a sulfuric acid cleanup.
- 4. The method blank was below the reporting limits for all target compounds.
- 5. One (1) of twelve (12) surrogate recoveries was outside QC limits; however, the surrogate recovery acceptance criteria were met (i.e., no more than one outlier per sample).
- 6. The blank spike recovery was within acceptance criteria.
- 7. All matrix spike recoveries were within acceptance criteria.
- 8. All initial calibrations associated with this data set were within acceptance criteria.
- 9. All continuing calibration standards analyzed prior to sample extracts were within acceptance criteria.
- 10. As of January 27, 2001, Recra Labnet Philadelphia became Lionville Laboratory Incorporated. Some forms may still reference Recra Labnet Philadelphia.

The results presented in this report relate only to the analytical testing and conditions of the samples at receipt and during storage. All pages of this report are integral parts of the analytical data. Therefore, this report should only be reproduced in its entirety of 8 pages.

11. I certify that this sample data package is in compliance with SOW requirements, both technically and for completeness, other than the conditions detailed above. Release of the data contained in this hard-copy data package has been authorized by the laboratory Manager or a designee, as verified by the following signature.

Date

Iain Daniels

Deputy Laboratory Manager

Lionville Laboratory Incorporated

peffr:\group\dmtx\pest\05L-798.pcb

94

Bechtel Hanford Inc.		HAIN OF CUST	TODY	/SAMPL	E ANAL	YSIS	REQUEST	B00-030-008	Page 1 of 1
Collector MT Stankovich	Compo Mik	nny Contact e Stankovich		Acae No. 1-7620			Project Coordinator TRENT, SJ	Price Code 8L	Data Turnarous
Project Designation 100 F Area - Full Protocol		ing Location 7-F6					SAF No. B00-030	Air Quality	21 Days
Lee Chest No.	M Fleid I	.ogbook No 1535-1		COA R607F62	600		Method of Shipment	Ĺ	
Shipped To MS-14-01 THANKECRA GIONUILLE RECY	Offsite	Property No. HMS	Ra	2/0093	59		Bill of Ending/Air 2	H) No.	
POSSIBLE SAMPLE HAZARDS/REMARKS PCB Site		Preservation	1	Carl 4C	Coal 4C	Non	250		
<50ppm		Type of Container	105	Boo	A sG	∌G	c 50		
, ,		No. of Container(s)			<u> </u>	<u> </u>	_ _ '		
Special Handling and/or Storage PCB4		Volume	60mL	250mL	250mL	250m		1	
· Sample analys	is		Buseline 89,99 - To Sr. Nided I Cades I Today	D; k	Somi-VOA - 8270A (TCL)	Sue item Specia Instructi	(1) in Section (2) in Sheeld near instructions		
Sample No. Matrix *	Sample Date	Sample Time	5-1-4		 	 			Ter
	5-14-01			1-	-	-			0104
B121F5 SOIL SOIL	5-14-0				-	-			\$106
C									
2									
C/I			L	<u> </u>	<u> </u>	<u> </u>			
CHAIN OF POSSESSION Relinquished By SFANGOUR 4 Date/Time	Sign/Print		e/Time		TAL INSTR			pa 5-11-01	Matrix ⁴
5-14-01 /1610	5-14-01	2C 5.1	4-01/1	D/ G	CP Motals - 60	IOA (Supe	rtrace) [Assenia Chrombs	n, Lead); M urany - 7471 - (679) p inn- 152, Europian-154, Europian	S-Solt SE-Sodiment N=1-337 Storage
Ralinguished By ROMEUSED TYLEN, Date Time OF 30		EThoren D	erlies O	(30)	P	76	18-01	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	5()-Solid 5 -Solid W - Water
1 20 5728 5-16-01 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1 1 1	- Cor	21					G-CH A-Air US-Dress So
Relinquishing By Daje/Time	Received By /		c/Time				Samples stored	in Ref.# 21 st the 3728	OL=Doom Liv 7=Tience W =Wipe
terso 5/17/01 0950	Per	west 5/17/0	109	501			Shipping Facili	ty on SIHIOL	Legiquid V-Vegetation
Relinquished By Date/Time	Received By	'Dak	e/Time		4 Kg		samples on 5	railable to relenquish	X-Dater
Relinquished By Date/Time	Received By	Dete	t/Time		1 79)		•	PT 1601
LABORATORY Received By SECTION			τ	itle					te/Time
FINAL SAMPLE Disposal Method DISPOSITION					Dispos	ed By		Da	te/Time

Appendix 5

Data Validation Supporting Documentation

VALIDATION LEVEL:	•					
	Α	В	(c)	D	E	
PROJECT:	100F		DATA PACKAGE	: H13	53	
VALIDATOR:	T4	LAB: LC	-1	DATE:	7/14/01	
CASE:			SDG: #	1353		
		ANALYSES	PERFORMED	,, <u>-</u> ,		_
☐ CLP3/90	☐ SW-846 8080	□ SW-846 8081	\$ 8085	ם	0	
SAMPLES/MATR	IX .					
ゟ	121FS	BIZIF	6			
			•			
				.		
			•			
		it?			No No	N/A
omments:		it?			No No	N/A
omments:	IMES	acceptable?				N/A
. HOLDING T	IMES	acceptable?				N/A
. HOLDING T	IMES lding times	acceptable?				N/A
. HOLDING T re sample ho omments:	IMES Iding times of the second of the Second of the secon	acceptable?	7. 8 ° F			N/A
. HOLDING T re sample ho omments:	IMES Iding times Ore Server T PERFORMANCE NT PERFORMANCE	E AND CALIBRATE (METHOD 80)	7. 8 ° F TIONS BO AND 8081)		. Yes No	N/A
. HOLDING T re sample ho omments:	IMES Iding times Ore Server T PERFORMANCE NT PERFORMANCE tion times as	acceptable?	7.8° - F TIONS BO AND 8081)		. Yes No	N/A N/A

Are DBC retention times acceptable? Yes	No (N/A
Is the GC/MS tuning/performance check acceptable? Yes	No N/A
Comments:	
	<u> </u>
· · · · · · · · · · · · · · · · · · ·	
3.2 CALIBRATIONS (METHOD 8080 AND 8081)	
Are EVAL standard calibration factors and %RSD values acceptable? Yes	No (N/A
Are quantitation column calibration factor %RSD values acceptable? Yes	No N/A
Were the analytical sequence requirements met? Yes	No \ N∕A
Are continuing calibration %0 values acceptable? Yes	No N/A
Comments:	
3.3 INSTRUMENT PERFORMANCE AND INITIAL CALIBRATION (3/90 SOW) Was the initial calibration sequence performed? Yes Was the resolution acceptable in the resolution check mix? Yes	No N/A No N/A
Is resolution acceptable in the PEM, INDA and INDB? Yes	No N/A
Are DDT and Endrin breakdowns acceptable? Yes	No N/A
Are retention times in PEMs and calibration mixes acceptable? . Yes	No N/A
Are RPD values in the PEMs acceptable? Yes	No N/A
Are %RSD values acceptable? Yes	No N/A
Comments:	
	· · · · · · · · · · · · · · · · · · ·
·	
3.4 CALIBRATION VERIFICATION (3/90 SOW)	10
Were the analytical sequence requirements met? Yes	No / N/A
Is resolution acceptable in the PEMs? Yes	No N/A
Are initial calibrations acceptable?	No LN/A/

•		
Are retention times acceptable in the PEMs, INDA and INDB mixes? Yes	. No	CN/A
Are RPD values in the PEMs acceptable? Yes		N/A
Are the DDT and endrin breakdowns acceptable? Yes		N/A
Was GPC cleanup performed? Yes		N/A
Is the GPC calibration check acceptable? Yes		N/A
Was Florisil cleanup performed? Yes		N/A
Is the Florisil performance check acceptable? Yes		N/A
Comments:		
4. BLANKS		
Were laboratory blanks analyzed?	~	N/A
Are laboratory blank results acceptable? Yes		N/A
Were field/trip blanks analyzed? Yes		N/A
Are field/trip blank results acceptable? Yes	s No	A\
<u> </u>		
r Accuracy		
5. ACCURACY Were surrogates analyzed?	3	N /A
	¥	N/A
Are surrogate recoveries acceptable?		N/A
Were MS/MSD samples analyzed?		N/A
Are MS/MSD results acceptable?		N/A
Were LCS samples analyzed?		
Are LCS results acceptable? Ye	s No	
		<u> </u>

6. PRECISION				
Are MS/MSD RPD values acceptable?	• (Yes)	No	N/A
Are laboratory duplicate results acceptable?		Yes	No	(N/A)
Are field duplicate RPD values acceptable?		Yes	No (N/A
Are field split RPD values acceptable?		Yes	No	
Comments:				
				
				
7. SYSTEM PERFORMANCE				
Is chromatographic performance acceptable?	• •	Yes	No	
Are positive results resolved acceptably?		Yes	No	(N)A
Comments:				
	····			
			<u>" </u>	
				
8. COMPOUND IDENTIFICATION AND QUANTITATION		•		
Is compound identification acceptable?		Yes	No	(N)
Is compound quantitation acceptable?		Yes	No	
	·			
·				
9. REPORTED RESULTS AND QUANTITATION LIMITS				•
Are results reported for all requested analyses?		(Yes)	No	N/A
Are all results supported in the raw data?		Yes	No.	(N)A
Do results meet the CRQLs?		Yes	(No) N/A
Comments: 1221 aven				
		····		
			 -	
·				

Lionville Labo	. 79	78		TELD PE	rsonn	EL: (COMI						Re B	equ	es	i t Pa	3ge _	<u>1</u> 0	r1		Ü	L	<u>/[</u>	
Client 77VIL	<u>- HA</u>	WFord	SAF	# B	x0-0	30)	Refrige	rator#			3	3					3						
		npiing Date						#Tune	Container	Liquid														
Project # _1	134	13- Ca	<u>-1001-</u>	9999	1-00					Solid		IAG	(AG-					IAG						
Project Conta	cVPh	one /						Volume	•	Liquid														
Lionville Lab	orator	y Project Mans	100 20							Solid		250	250					320						
oc Stort	·	Del - 319	TAT.	<u>818</u>	<u>au</u>		<u> </u>	Preser	vatives		<u> </u>	<u> -</u>		<u> </u>				_						
, '		1701)			ANALY			¥0,	ORG ¥ Æ	ANIC BO	2 1				NO.	RG S					
MATRIX		T	····				etrix		T	T		<u> </u>	- L	1		Lionvi	le Le	borate	ry Us	e Only		1		
CODES; S - Soll SE - Sediment SO - Solid SL - Studge	Leb ID		Client ID/Deec	ription		Ch	DC Duen -/)	Matrix	Date Collected	Time Collected		HSZOX	अ स्ट					mPGTO						
	001	13/21	F5					S	5/14/01	0930		1	1					T					\neg	
A - Air	002	1	6	· · · · · · · · · · · · · · · · · · ·	***************************************			I	177	0921								,						
Solids										19.		-												
DL - Drum Liquids		†									_												\top	
L - EP/TCLP Leachale		 					 																	
Wi- Wipe X - Other		<u> </u>		···	·				f															
f- 186																	$\neg \neg$				f-	_		
X- Office F- FICO O O		 		 ·			-					 											一	
유							┞╼┤													 	 -	_	1	+-
اكز		}										-				┝╼╾┼							十	
						-	DATE	REVISION	 is:											Lionville	e Labors	tory Us		
Special Instruction		Sar B latrix c		,				;	1									Ham Alri 2) 3) I Co	Shipper nd Deli bill # Ambier Receive ndition Sample	Tules	Trad	1) Pre- Packa 2) Unb Packa 3) Pre- 4) Unb Sample	sent go ge or ge of sent on croken o	or N on Outer or N Semple or N on
Relinquished		Received by	Date	Time	Reli	inquis by	hed		Received by	De		Tim		Discrepancies Between Samples Labets and COC Record? You N			G	Property Preserved Of or N 5) Received Within Holding Times			N n	COC Record Present Upon Sample Rec'l (y) or N Cooler Cooler Temp		
Te YZ/		Herry	5/1/01	0950	G		POSI STE		7.	HGINA WRITT				8C	94	45	62 9	8999	6	*	N	Temp.		<u>1</u> . ℃

Date: 16 July 2001

To: Bechtel Hanford, Inc. (technical representative)

From: TechLaw, Inc.

Project: 100F Areas - Full Protocol

Subject: Radiochemistry - Data Package No. H1353-ES (SDG No. H1353)

INTRODUCTION

This memo presents the results of data validation on Summary Data Package No. H1353-ES which was prepared by Eberline Services (ES). A list of samples validated along with the analyses reported and the requested analytes is provided in the following table.

Sample ID	Sample Date	Madia	Velidation	Anglysis
B121F5	5/14/01	Soil	С	See note 1
B121F6	5/14/01	Soil	С	See note 1

^{1 -} Gamma spectroscopy; total strontium; carbon-14; nickel-63.

Data validation was conducted in accordance with the Bechtel Hanford Incorporated (BHI) validation statement of work and the 100 Area Remedial Action Sampling and Analysis Plan (DOE/RL September 2000). Appendices 1 through 6 provide the following information as indicated below:

- Appendix 1. Glossary of Data Reporting Qualifiers
- Appendix 2. Summary of Data Qualification
- Appendix 3. Qualified Data Summary and Annotated Laboratory Reports
- Appendix 4. Laboratory Narrative and Chain-of-Custody Documentation
- Appendix 5. Data Validation Supporting Documentation
- Appendix 6. Additional Data Requested by Client

DATA QUALITY PARAMETERS

Holding Times

Holding times are calculated from Chain-of-Custody forms to determine the validity of the results. The maximum holding time for radiochemical analysis is 6 months.

All holding times were acceptable.

• Preparation (Method) Blanks

Laboratory Blanks

Blank samples are analyzed to determine if positive results are due to laboratory reagent, sample container, or detector contamination. If blank analysis results indicate the presence of an analyte above the minimum detectable activity (MDA), the following qualifiers are applied: All positive sample results less than five times the highest blank concentration are qualified as estimates and flagged "J"; sample results below the MDA are qualified as undetected and flagged "U"; sample results above the MDA and greater than five times the highest blank concentration are not qualified.

All blank results were acceptable.

Field Blank

No field blanks were submitted with the SDG.

Accuracy

Accuracy is evaluated from laboratory control sample (LCS) or blank spike sample (BSS) batch samples and spiked samples from the analytical batch. Measured activities are compared to the known added amounts. The acceptable LCS or BSS and matrix spike (MS) recovery range is either 70-130% or ±3 sigma. In addition, samples may be spiked with a radiochemical tracer to assist in isolating the radioisotope of interest with the yield of the tracer being used in calculating sample activity. The acceptable range for tracer recovery is 20% to 105%. Spike sample results outside the above ranges result in associated sample results being qualified as estimates, or not qualified, depending on the activity of the individual sample. Results are rejected for LCS/BSS recoveries of less than 30% or ±3 sigma, tracer recoveries of less than 20%, and tracer recoveries of greater than 115% for detected results.

All accuracy results were acceptable.

Laboratory Duplicates

Analytical precision is expressed by the relative percent differences (RPD) between the recoveries of duplicate matrix spike analyses performed on a sample in the analytical batch. Precision may alternatively be assessed using unspiked duplicate analyses performed on a sample in the analytical batch. If both sample and replicate activities (concentrations) are greater than five times the contract required detection limit (CRDL) and the RPD is less than 30%, no

qualification is required. If either activity (concentration) is less than five times the CRDL, the RPD control limit is less than or equal to two times the CRDL. If the RPD is outside the applicable control limit, associated results are qualified as estimated detects or estimated non-detects.

All duplicate results were acceptable.

Field Duplicate

No field duplicates were submitted for analysis.

Detection Levels

Reported analytical detection levels for undetected analytes are compared against the 100 Area Remedial Action Sampling and Analysis Plan target detection limits (TDLs) to ensure that laboratory detection levels meet the required criteria. The following analytes were reported above their TDL: Uranium-238 in all samples. Under the BHI statement of work, no qualification is required. All other reported laboratory MDAs were at or below the analyte-specific TDL.

Completeness

Data package No. H1353-ES (SDG No. H1353) was submitted for validation and verified for completeness. Completeness is based on the percentage of data determined to be valid (i.e., not rejected). The completion percentage was 100%.

MAJOR DEFICIENCIES

None found.

MINOR DEFICIENCIES

The following analytes were reported above their TDL: Uranium-238 in all samples. Under the BHI statement of work, no qualification is required.

REFERENCES

BHI, MRB-SBB-A23665, Validation Statement of Work, Bechtel Hanford Incorporated, September 5, 1997.

DOE/RL-96-22, Rev. 2, 100 Area Remedial Action Sampling and Analysis Plan, U.S. Department of Energy, September 2000.

Appendix 1
Glossary of Data Reporting Qualifiers

Qualifiers which may be applied by data validators in compliance with the BHI statement of work are as follows:

- Indicates the compound or analyte was analyzed for and not detected above the minimum detectable activity (MDA) in the sample. The value reported is the sample result corrected for sample dilution and moisture content by the laboratory. The data is usable for decision making purposes.
- UJ Indicates the compound or analyte was analyzed for and not detected at concentrations above the minimum detectable activity (MDA) in the sample. Due to a minor QC deficiency identified during the data validation, the associated quantitation limit is an estimate, but is usable for decision making purposes.
- J Indicates the compound or analyte was analyzed for and detected. Due to a minor QC deficiency identified during the data validation, the associated concentration is an estimate, but the data are usable for decision-making purposes.
- R Indicates the compound or analyte was analyzed for, detected, and due to an identified major QC deficiency, the data are unusable.
- UR Indicates the compound or analyte was analyzed for and not detected in the sample. Additionally, the data is unusable due to an identified major QC deficiency.

Appendix 2
Summary of Data Qualification

DATA QUALIFICATION SUMMARY

SDG: H1353	REVIEWER: TLI	DATE: 7/16/01	PAGE_1_0F_1_
COMMENTS: No qualifi	ers assigned		

Appendix 3

Qualified Data Summary and Annotated Laboratory Reports

زيا	
0	
Į A	
Ö	

Laboratory: E8																					
Case	SDG:	H1363]																	
Sample Number		B121F5		B121F6						<u> </u>		<u> </u>						<u> </u>			1
Remarks										<u> </u>				ļ				<u> </u>		L	┙
Sample Date		5/14/01		5/14/01														<u> </u>			┙
Radiochemistry	TDL,	Result	Q		-	Result	Q	Result	a	Result	a	Result	a	Result	Q	Result	Q	Result	Q	<u> </u>	1
Carbon-14	26	-0.201	U	-0.160	_		Ļ	┖	_		L	<u> </u>	<u> </u>		<u> </u>		┺	<u> </u>	_	<u> </u>	┙
Nickel-63		0.093	U	0.208		<u> </u>	L		L		L		L		↓_		<u> </u>	<u> </u>	<u>L</u>	<u> </u>	1
Strontium (total)	1	-0.006	U	-0.003	U	<u> </u>	L		<u> </u>				L		↓_	ļ	<u> </u>	<u> </u>	⇂	<u> </u>	_
Potassium-40		13.9		14.1		<u> </u>	L		 		L	<u> </u>	oxdot	Ļ <u>.</u>	<u>L</u>		↓_	<u> </u>	_	<u> </u>	1
Cobait 60	0.05		U	U	<u>U</u>		L		<u> </u>		┖		L	<u> </u>	↓_		上	↓	<u> </u>	<u> </u>	1
Cesium 137	0.05	0.050		0.089			辶		 		╙		<u> </u>	<u></u>	↓_		┺	<u> </u>	乚	<u> </u>	1
Radium-226		0.486		0.468		L	L	↓	<u> </u>	L	$oldsymbol{ol}}}}}}}}}}}}}}}}}$	ļ			↓_		<u> </u>	<u> </u>	<u> </u>	<u> </u>	1
Radium-228		0.684		0.760			L.		↓_		匚		<u> </u>		<u> </u>		<u> </u>	<u> </u>	L		4
Europium 152	9.1	0.029		0,065			L	<u> </u>	<u> </u>		L		L		<u> </u>		$oxed{oxed}$	<u> </u>		<u> </u>	_
Europium 154	0.1	U	U	U		Ĺ	L		<u> </u>		L	L	L	<u> </u>	<u> </u>		┖	<u> </u>	<u>L</u> .		4
Europium 165	0.1	0.022	U	U	U	<u> </u>	_	<u></u>	┖	!	<u> </u>		<u> </u>	<u> </u>	↓_	<u> </u>	L	<u> </u>	Ļ		1
Thorium-228		0.824		0.663	_		L		<u> </u>		L		1_		Ļ_		ļ.,	<u> </u>	<u> </u>		4
Thorium-232		0.684	L	0,760			ட	<u></u>	<u> </u>		ᆫ	<u> </u>	L	<u> </u>	<u> </u>	ļ	<u> </u>	<u> </u>	Ц		1
Uranium-235 (GEA)	0.1	0.026	υ	0.024	U		乚	<u> </u>	_				L		Ļ _		1	<u> </u>	<u> </u>		1
Urankum-238 (GEA)	0.1	U	U	U				<u> </u>	<u> </u>		L		ᆫ		↓_		_	<u> </u>	<u> </u>		4
Americium-241 (GEA)	0.1	υ	U	U	U		Щ		<u> </u>		<u> </u>		L		↓_				_	 	1
							_		_				<u> </u>	Ĺ	<u> </u>		<u> </u>			<u> </u>	4
					·		<u>L</u>	<u> </u>	<u> </u>		_		_		<u> </u>		<u> </u>	<u> </u>	<u> </u>		4
								<u></u>	<u> </u>		<u>L</u>		辶		↓_	<u> </u>	ļ	<u> </u>			1
			Ĺ				L	<u> </u>	<u> </u>	<u></u>	_		L	<u> </u>	↓_		<u> </u>	<u> </u>	L		4
							<u>L</u>	<u> </u>	<u> </u>		╙		L		 _		1		<u> </u>		1
								<u> </u>	_		┖		<u> </u>		╄-			<u> </u>	<u> </u>		1
								<u> </u>	<u> </u>		╙		<u> </u>		<u> </u>	<u> </u>	丄		<u> </u>		4
									<u> </u>		_		_		<u> </u>		1_	<u> </u>	<u> </u>		1
						L		<u></u>	L	<u> </u>	辶				<u> </u>	<u> </u>	$oldsymbol{ol}}}}}}}}}}}}}}}}}}$		L	<u> </u>	
									L				L		L_		_	<u> </u>	Ŀ		_
			Г					7		l " "	1	f - '	1	ì	ı	ł	1	1	l l	l	į

EBERLINE SERVICES/RICHMOND SAMPLE DELIVERY GROUP H1353

R105107-02

DATA SHEET

B12176

I I	7693 Melissa C. Mannion	Client/Case no Contract		SDG_H1353
Lab sample id	R105107-02	Client sample id	B121F6	
Dept sample id	7693-002	Location/Matrix	1607-F6	SOLID
Received	05/17/01	Collected	05/14/01 09:21	
* solids	98.7	Custody/SAF No	B00-030-008 B00-	030

ANALYTE	CAS NO	result pCi/g	2σ ERR (COUNT)	MDA pCi/g	RDL pCi/g	QUALI- FIERS	Test
Carbon 14	14762-75-5	-0.160	3.0	5.1	50	U	С
Nickel 63	13981-37-8	0.208	1.4	2.3	30	U	NI_L
Total Strontium	SR-RAD	-0.003	0.13	0.18	1.0	U	SR
Potassium 40	13966-00-2	14.1	0.43	0.094			GAM
Cobalt 60	10198-40-0	υ		0.009	0.050	U	GAM
Cesium 137	10045-97-3	0.089	0.007	0.008	0.10	J	GAM
Radium 226	13982-63-3	0.468	0.020	0.017	0.10		GAM
Radium 228	15262-20-1	0.760	0.047	0.041	0.20		GAM
Europium 152	14683-23-9	0.065	0.012	0.019	0.10	J	GAM
Europium 154	15585-10-1	ט		0.031	0,10	U	GAM
Europium 155	14391-16-3	U ·		0.035	0.10	ซ	GAM
Thorium 228	14274-82-9	0.663	0.014	0.010			GAM
Thorium 232	TH-232	0.760	0.047	0.041			GAM
Uranium 235	15117-96-1	0.024	0.023	0.036		ប	GAM
Uranium 238	U-238	σ		1.1		U	GAM
Americium 241	14596-10-2	บ		0.013		U	GAM

100 F Area - Full Protocol

pe/14/01

DATA SHEETS
Page 2
SUMMARY DATA SECTION
Page 11

Lab id TMANC
Protocol Hanford
Version Ver 1.0
Form DVD-DS
Version 3.06
Report date 06/04/01

EBERLINE SERVICES/RICHMOND SAMPLE DELIVERY GROUP H1353

R105107-01

DATA SHRET

B121F5

	7693 Melissa C. Mannion	Client/Case no Contract		SDG_H1353
3		Client sample id Location/Matrix Collected Custody/SAF No	1607-F6 05/14/01 09:30	SQLID -030

ANALYTE	CAS NO	RESULT pCi/g	2σ ERR (COUNT)	MDA pCi/g	RDL pCi/g	QUALI- FIERS	TRST
Carbon 14	14762-75-5	-0.201	3.2	5.3	50	U	С
Nickel 63	13981-37-8	0.093	1.3	2.3	30	ซ	NI_L
Total Strontium	SR-RAD	-0.006	0.15	0.21	1.0	ט	SR
Potassium 40	13966-00-2	13.9	0.20	0.079			GAM
Cobalt 60	10198-40-0	U		0.008	0.050	U	GAM
Cesium 137	10045-97-3	0.050	0.009	0.010	0.10	J	GAM
Radium 226	13982-63-3	0.486	0.018	0.016	0.10		GAM
Radium 228	15262-20-1	0.684	0.040	0.038	0.20		GAM
Europium 152	14683-23-9	0.029	0.010	0.017	0.10	J	GAM
Europium 154	15585-10-1	บ		0.030	0.10	U	GAM
Europium 155	14391-16-3	0.022	0.016	0.025	0.10	บ	GAM
Thorium 228	14274-82-9	0.624	0.011	0.010			GAM
Thorium 232	TH-232	0.684	0.040	0.038	•		GAM
Uranium 235	15117-96-1	0.026	0.026	0.037		U	GAM
Uranium 238	U-238	Ū		1.0		บ	GAM
Americium 241	14596-10-2	Ū		0.032		ט	GAM

100 F Area - Full Protocol

7/16/01

DATA SHEETS
Page 1
SUMMARY DATA SECTION
Page 10

Lab id TMANC
Protocol Hanford
Version Ver 1.0
Form DVD-DS
Version 3.06
Report date 06/04/01

Appendix 4

Laboratory Narrative and Chain-of-Custody Documentation

Page 1 of 1

1.0 GENERAL

Bechtel Hanford Inc. (BHI) Sample Delivery Group H1353 was composed of two solid (soil) samples designated under SAF No. B00-030 with a Project Designation of: 100 F Area – Full Protocol.

The samples were received as stated on the Chain-of-Custody documents. Any discrepancies are noted on the Eberline Services Sample Receipt Checklist. The results were transmitted to BHI via e-Fax on June 4, 2001.

2.0 ANALYSIS NOTES

2.1 Carbon-14 Analyses

No problems were encountered during the course of the analyses.

2.2 Nickel-63 Analyses

No problems were encountered during the course of the analyses.

2.3 Total Strontium Analyses

No problems were encountered during the course of the analyses.

2.4 Gamma Spectroscopy Analyses

No problems were encountered during the course of the analyses.

Case Narrative Certification Statement

"I certify that this data package is in compliance with the SOW, both technically and for completeness, for other than the conditions detailed above. Release of the data obtained in this hard copy data package has been authorized by the Laboratory Manager or a designee, as verified by the following signature."

Melissa C. Mannion Program Manager Date

Bechtel Hanford Inc.	BC,	CE	CHAIN OF CUS	P CUSTODY/SAMPLE ANALYSIS REOTIFST	AMPLE	ANALY	SISRE	OTIEST	B00-0	B00-030-008	- i	8
Collector MT Stankovich		Company	Company Contact Mile Stankovich	Telephone No. 531-7620	c No.		£ 5	Project Coordinator	Price Code 8	38.F	Dets Tu	Date Turnaround
Project Designation 100 F Area - Full Protocol		Scarpille 1607-		H1353	(7693	3)	38	SAF Ne. 800-030) <u>2</u> -		21	21 Days
TAZ-M	1AZ-METALD	Pield Lo	Field Leghesk No. EL-1535-1		COA R607862600		到7	Method of Shipperst				
Shipped To S-14-01 Third BGRA (5 to 1), me Se conse	Service	Officie P.	Officite Property No.	tms _E	Ø0000	754		Hit of Lading/Air Bill No.	No.			
POSSIBLE SAMPLE HAZARDS/REMARKS	WEMARKS		Preservation	1	EST.	100 P	4	1				
KSOUDM		1	Type of Container	De	4		1	-				
	•		No. of Container(s)	-				-		1		
Special Handling and/or Storage PCBs		1	Volume	71109	7	2	1	10001				
	SAMPLE ANALYSIS	S13		124	Š.	Semi-	(C)	Sto ben (3) is Special Learning			1	7
Sample No.	Matrix *	Sample Date	Semple Three	1-	1	+	1	-	-	+		1
B121F6	SOL	5-14-01	08 30	,				1		<u> </u>		19000
8121F6 /	SOIL	10-1-1-5	1260	\				1				19010
											·	
					ŀ			_				
CHAIN OF POSSESSION		Sign/Print Names	inc.		SPECE	SPECIAL INSTRUCTIONS	NOL	_				Matrix *
Religious By Stankoud	DawTime	1000	Stones in	Date/Time	£	Agina Annahe	(Supposes	- Charles and Charles	10 - 10 - 20 000 (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000) (2000)			
DOD TRANSVERSION	汽	1	7 ⊱	からら	€ 	nesa Spectroeco;	y (Caim	137, Co balt-60 , Buropi	inns-152, Buropines-154		-155}	
K Thoman	1	かが	1		T		G	A Dan Dansey	or 12 Cat the 3728	827		A-44 04-0 Bath 04-0 Liqu
750° 75 7500	S-PE	17. S.	0275)	7	#	1	336	Shipping Facility on	ble to releaquish			N. Marie V. Light
Relinquiched By	Dato/Time	Received By		ato/Time		(=	3 3	41/ Suo soldu	samples on S / [6/ D) for shipment.	it L	``	×0×
Reinquished By	Date/Time	Localved By		Dato/Time		क्री				5-11-01	<u>~</u>	
LABORATORY Recived By SECTION				ş						Det	Date/Time	
PINAL SAMPLE Disposed Method Disposed Method						Disposed By	À			Date	Date/Time	
BHI-EE-011 (10/99)												

Appendix 5

Data Validation Supporting Documentation

RADIOCHEMICAL DATA VALIDATION CHECKLIST

VALIDATION LEVEL:	A	В	(c)	D	E
PROJECT: \	06 F		. DATA PACKA	IGE: #135	3
VALIDATOR:	TL(LAB: F	3	DATE: 7/10	101
CASE:			SDG: #13	353	
		ANALYSES	PERFORMED		
☐ Gross Alphs/Bets	Strontium-90	☐ Technetium-89	☐ Alpha Spectroscopy	Spectroscopy	
☐ Total Uranium	☐ Redium-22	□ Tritium	K CIY	X N163	
SAMPLES/MATE	RIX		•		
	UFS	B121F0	,		
					· · · · · · · · · · · · · · · · · · ·
	•	-			
1. Completer	ness				X N/A
-		*		Ye:	s No N/A
iechnical ver	rification fo	rms present?	• • • • •	re	s no nya
Comments:					<u></u>
	· "	·	<u></u>		
					-···
2 Initial (Calibration				DAN/A
Instruments/c	detectors cal ar of sample	ibrated withi analysis? .	.n	Ye	s No N/A
•	•	-		Ye	
Standards NI	ST traceable?			Ye	s No N/A
Standards Exp	pired?			Ye	s No N/A
Comments:		-	•		·
					
				<u> </u>	

A\$20017

WHC-SD-EN-SPP-001, Rev. 1

3. Continuing Calibration	•)	I/A
Calibration checked within one week of sample analysis? .	•	. Yes	No N	A/P
Calibration check acceptable?			No N	N/A
Calibration check standards NIST traceable?			No 1	N/A
Calibration check standards expired?	•	. Yes	No N	N/A
Comments:		*************************************		
4. Blanks	•	• • • •	🗆 ۱	 N/A
Method blank analyzed?	•	. Yes	>No N	N/A
Method blank results acceptable?	•	Yes	No N	N/A
Analytes detected in method blank?	•	. Yes	(NO) 1	N/A
Field blank(s) analyzed?	•	. Yes	NO I	N/A
Field blank results acceptable?	•	. Yes	No (
Analytes detected in field $blank(s)$?	•	. Yes	_	N/A
Transcription/Calculation Errors?	• '	. Yes	No (N/A
Comments:				
5. Matrix Spikes	•			— N/A
Matrix spike analyzed?		. Yes		N/A
Spike recoveries acceptable?				, N/A
Spike source traceable?				N/A
Spike source expired?	•	. Yes	No !	N/A
Transcription/Calculation Errors?	•	. Yes	No !	N/A
•				

WHC-SD-EN-SPP-001, Rev. 1

6.	Laboratory Control Samples .	•	•	•	•	•		•	•	•	•	•	•		•			□ N/A
LCS	analyzed?		•	٠						•.	•	•			(Yes) No	N/A
	recoveries acceptable?																No	N/A
	traceable?														•		No	NIA
	nscription/Calculation Errors?																No	M/A
Com	nents:													· 				
				_														
7.	Chemical Recovery		•	•		•	•	•	•	•	•		•	•	•	• •	^	ÉN/A
Chen	mical carrier added?	•		•	•		•	•	•						•	Yes	No	N/A
Chen	mical recovery acceptable?	•		•	•	•		•	•			•			•	Yes	No	N/A
Chen	nical carrier traceable?	•	•	•	•	•	•		•		•	•	•	•	•	Yes	No	N/A
Chen	nical carrier expired?	•	•	•	•		•	•	•		•	•		•	•	Yes	No	N/A
Tran	scription/Calculation errors?	•	•	•	•	•	•	•	•	•	•	•	•	•	•	Yes	No	N/A
Com	nents:															·		
				,														
				4														-
				_	-			- <u> </u>		_			_					
8.	Duplicates	•	•	•	•	•	•	•	•	•	•		•	•				□ N/A
Dupl	icates Analyzed?	•			•	•								•	• (Yes) No	N/A
RPD	Values Acceptable?	•		•	•		•	•	•				•		٠,	res)	No	N/A
Tran	nscription/Calculation Errors?	•		•	•	•		•	• .	•	•				•	Yes	No	(N)
Com	nents:											<u>.</u>				-		
							_										······································	
	· · · · · · · · · · · · · · · · · · ·									_		_		_		<u> </u>		· · · · · · · · · · · · · · · · · · ·

A\$ 000019

Field duplicate sample(s) analyzed? Ye Field duplicate RPD values acceptable? Ye Field split sample(s) analyzed? Ye Field split RPD values acceptable? Ye Performance audit sample(s) analyzed? Ye Performance audit sample results acceptable? Ye Comments: 10. Holding Times Are sample holding times acceptable?	s No
Field split RPD values acceptable? Ye Performance audit sample(s) analyzed? Ye Performance audit sample results acceptable? Ye Comments: 10. Holding Times Are sample holding times acceptable?	s No
Performance audit sample(s) analyzed? Ye Performance audit sample results acceptable? Ye Comments: 10. Holding Times Are sample holding times acceptable?	s No
Performance audit sample results acceptable? Ye Comments: 10. Holding Times Are sample holding times acceptable?	s No
Comments: 10. Holding Times Are sample holding times acceptable?	
10. Holding Times Are sample holding times acceptable?	
Are sample holding times acceptable?	
	s No
Comments:	<i>"</i>
11. Results and Detection Limits (Levels D & E)	
Results reported for all required sample analyses?	s No
Results supported in raw data? Ye	S No
Results Acceptable?	S No
Transcription/Calculation errors? Ye	-
MDA's meet required detection limits? Ye	
Transcription/calculation errors? Ye	es No
Comments: U2-38 - one	

Appendix 6 Additional Documentation Requested by Client

EBERLINE SERVICES/RICHMOND SAMPLE DELIVERY GROUP #1353

R105107-05

DUPLICATE

B121F5

SDG 7693		Client/Case no <u>Hanford SDG H1353</u>
Contact <u>Melissa</u> C. Mannion		Case no No. 630
DUPLICATE	ORIGINAL	
Lab sample id <u>R105107-05</u>	Lab sample id <u>8105107-01</u>	Client sample id <u>B121F5</u>
Dept sample id <u>7693-005</u>	Dept sample id <u>7693-001</u>	Location/Matrix 1607-F6 SOLID
	Received <u>05/17/01</u>	Collected <u>05/14/01 09:30</u>
% solids <u>98.5</u>	% solids <u>98.5</u>	Custody/SAF No <u>800-030-008</u> <u>800-030</u>

ANALYTE	DUPLICATE pCi/g	2ø ERR (COUNT)	MDA pCi/g	RDL pCi/g	GUALI- FIERS	TEST	ORIGINAL pCi/g	20 ERR (COUNT)	MDA pCi/g	QUALI- FIERS	RPD %	3 <i>a</i> ⊤0⊺	PROT
Carbon 14	-0.585	2.9	4.9	50	U	С	-0.201	3.2	5.3	U	•		
Nickel 63	-0.113	1.4	2.3	30	U	NI_L	0.093	1.3	2.3	U	-		
Total Strontium	0.037	0.16	0.20	1.0	U	SR	-0.006	0.15	0.21	U	•		
Potassium 40	13.4	0.59	0.23			GAM	13.9	0.20	0.079		4	33	
Cobalt 60	บ		0.025	0.050	U	GAM	U		0.008	U	•		
Cesium 137	0.065	0.023	0.026	0.10	J	GAM	0.050	0.009	0.010	J	26	72	
Radium 226	0.457	0.050	0.046	0.10		GAM	0.486	0.018	0.016		6	36	
Redium 228	0.742	0.13	0.12	0.20		GAM	0.684	0.040	0.038		8	43	
Europium 152	U		0,060	0.10	U	GAM	0.029	0.010	0.017	J	70	208	
Europium 154	U		0.088	0.10	U	GAM	U		0.030	U	-		
Europium 155	U		0.065	0.10	, U	GAM	0.022	0.016	0.025	บ	-		
Thorium 228	0.631	0.032	0.027		-	GAM	0.624	0.011	0.010		1	33	
Thorium 232	0.742	0.13	0.12		÷	GAM	0.684	0.040	0.038		8	43	
Uranium 235	U		0.10		U	GAM	0.026	0.026	0.037	U	-		
Uranium 238	u		2.9		U	GAM	υ		1.0	U	-		
Americium 241	U		0.093		U	GAM	l u		0.032	U	-		

100 F Area - Full Protocol

QC-DUP#1	3869 2		

DUPLICATES
Page 1
SUMMARY DATA SECTION
Page 9

Lab id TMANC
Protocol Hanford

Protocol <u>Henford</u> Version <u>Ver 1.0</u>

Form DVD-DUP

Version 3.06

Report date 06/04/01

EBERLINE SERVICES/RICHMOND SAMPLE DELIVERY GROUP H1353

R105107-03

LAB CONTROL SAMPLE

Lab Control Sample

SDG <u>7693</u> Contact <u>Melissa C. Mannion</u>	Client/Case no <u>Henford SDG H1353</u> Case no <u>No. 630</u>
Lab sample id <u>R105107-03</u> Dept sample id <u>7693-003</u>	Client sample id <u>Lab Control Sample</u> Material/Matrix SOLID
Dept. sample 10 7093-003	SAF No <u>B00-030</u>

ANALYTE	RESULT pCi/g	2ø ERR (COUNT)	MDA pCi/g	RDL pCi/g	QUALI- FIERS	TEST	ADDED pCi/g	2ø ERR pCi/g	REC %	3σ LHTS (TOTAL)	PROTOCOL LIMITS
Carbon 14	11200	550	34	50		c	11300	450	99	84-116	80-120
Nickel 63	255	5.4	2.6	30		NI_L	264	11	97	84-116	80-120
Total Strontium	24.7	0.64	0.24	1.0		SR	22.1	0.88	112	82-118	80-120
Cobalt 60	0.312	0.030	0.018	0.050		GAM	0.289	0.012	108	70-130	80-120
Cesium 137	0.314	0.021	0.014	0.10		GAH	0.294	0.012	107	73-127	80-120

100 F Area - Full Protocol

QC-LCS 38690	

LAB CONTROL SAMPLES
Page 1
SUMMARY DATA SECTION
Page 8

Leb id TMANC
Protocol Henford
Version Ver 1.0
Form DVD-LCS
Version 3.06
Report date 06/04/01

EBERLINE SERVICES/RICHMOND SAMPLE DELIVERY GROUP H1353

R105107-04

METHOD BLANK

Method Blank

1	7693 Melissa C. Mannion	Client/Case no Contract	 SDG H1353
Lab sample id Dept sample id		Client sample id Material/Matrix SAF No	SOLID

ANALYTE	CAS NO	RESULT pCi/g	2σ ERR (COUNT)	MDA pci/g	RDL pCi/g	QUALI- FIERS	TEST
Carbon 14	14762-75-5	0.103	3.2	5.4	50	บ	C
Nickel 63	13981-37-8	0.539	1.3	2.1	30	ប	NI_L
Total Strontium	SR-RAD	-0.138	0.23	0.34	1.0	ប	SR
Potassium 40	13966-00-2	ប		0.49		U	GAM
Cobalt 60	10198-40-0	ប		0.017	0.050	ש	GAM
Cesium 137	10045-97-3	υ		0.018	0.10	ט	GAM
Radium 226	13982-63-3	U		0.044	0.10	U	GAM
Radium 228	15262-20-1	ซ		0.078	0.20	ט	GAM
Europium 152	14683-23-9	ט		0.041	0.10	Ū	GAM
Europium 154	15585-10-1	U		0.057	0.10	U	GAM
Europium 155	14391-16-3	U		0.033	0.10	U	GAM
Thorium 228	14274-82-9	U *		0.039		U	GAM
Thorium 232	TH-232	U .		0.078		U	GAM
Uranium 235	15117-96-1	Ū		0.056		U	GAM
Uranium 238	U-238	ប		1.9		U	GAM
Americium 241	14596-10-2	U		0.017		U	GAM

100 F Area - Full Protocol

QC-BLANK	38691	

METROD BLANKS
Page 1
SUMMARY DATA SECTION
Page 7

Lab id TMANC
Protocol Hanford
Version Ver 1.0
Form DVD-DS
Version 3.06
Report date 06/04/01

	Review Com	ment Record (RCF	t)		1. Date 7/19/01		2. Review No. BHI/QA1008	
					3. Project		4. Page	
					100F	<u> </u>	Page 1 of 1	
5. Do o	nument Number(s)/Title(s)	6. Program/Project/ Buskting Number	7. Reviewe	-	8. Organization/	Growp	9. Location/Pl	lone
SDG 1	No.: H1353	100F Areas Full Protocol	Claude Sta	cey	ВНІ/QА		H0-16/372-92	208
7. Oor	ment Submittel Approval:	I.G. Agreement with indicated o	orryment dispositi	on(s)	11. CLOSET	·		
		Date Auf	or/Originator		Date -		Author/Originator	
12.	13. Comment(s)/Discrepancy(s) (P	rovide technical justification for the	14.					
ltem	comment and detailed recommends resolve the discrepancy/problem in	tion of the action required to correct/	Hold Point	15 Dieno	sition (Provide justification	a if MOT	incented \	16. Statu
1	Semivolatile: Page 01, 04, refers to	the data package as H1353-LVI; data package as H1353-LLI. The LVI					son-proces	Joans
2	the units as ug/1. This should be ch		ıd	مم	~ h			
3	Semivolatile: Pages 12 and 13 are r	eversed.		car	~ ×		-	
4	Radiochemistry: OK - No Comme	πls						
5	PCBs: OK No Comment							
6	Inorganic: Pages 10 and 11 are rev	ersed.		car	men pen			

Lynch, Sherry A

From:

Sent:

Weiss, Richard L Tuesday, July 17, 2001 11:58 AM Lynch, Sherry A

To: Cc:

Subject:

Duncan, Jeanette M Comments on SDG H1353 Validation Packages

Follow Up Flag: Due By: Flag Status:

Follow up

Wednesday, July 18, 2001 5:00 PM Flagged

Sherry,

Inorganics - Pages 10 & 11 are "swapped" relative to all other packages.


Semivolatiles - Pages 12 & 13 are "swapped". Here is what I found on review of the validation packages for SDG H1353

Rich

PCBs - No comments.

1

	Review Commi	Review Comment Record (RCR)	_		I. Date	2. Roview No.	
			.		7/19/01	BH/QA1008	
				en	3. Projest	4. Pago	
					100F	Page 1 of 1	
S. De	5. Decement Namber(s)Tric(s)	6. Program/Projecs/ Building Number	7. Reviewer		8. Organization/Group	9. Location/Phane	919
2003	8DG No.: H1353	100F Arens Full Protocof Cleude Staces	Cleude Stac	,	BHUQA	HO-16/372-9208	20
= B	17. Cenners Sphaint Appared:	19. Agreement while indicated construct dispertition(s)	same at disparities		II. CLOSED		9
8	Organization Mestyro (Optional)	Less Assessment of the Park	Revivery/Pales of Combes		1/8/61	Flace Mariante	1
			AylorOdglester			Anthodustra	}
₩ 2	11. Consense and debulled reconstruction of the selion required to correct consense and debulled reconstructualistics of the selion required to correct	of justifications for the on required to come	Fold Fold				, je
	mestre the discrepancy of which indicated.)	(3)	Poten	15. Disposition (P.	15. Disposition (Provide justification if NOT accepted.)	"accepted.)	Status
-	Stairobille: Page 04, 04, rafter to the data package whereus, office sections soler to the data package shawed to change to 11.1 to be condition.	ota packago as HIDSD-LVI; actogs as BIDSS-LLL. The LVI t.		S	7		1 .
~	Sent-rolatible: Page 16 and 11 the lable benefing has the matalu as water and the waits as ugd). This about he estanged to Solf and ruits of UG/RG.	calling has the matrix as water and to Soil and reals of UGIKO.		The state of the s	-		Z-32
-	Semirolaile: Pages 12 and 13 are proteed	¥		Cerr	X		
-	Radiochawisty; OK - No Canners						
m	PCBr: OK - Ne Coernsent						
9	Inorganic: Pages 10 and 11 are reversed.				- 1		

TECHLAW, INC.

451 Hills, Suite 23 Richland, WA 99352 509-375-5667 509-375-5151 (fax)

To: Jeanctte Duncan

From: Bruce Christian

Pages: I

Date: 20 June 2001

Information Request #2

H1353 - Semi-VOA/PCB

The laboratory work request indicates that the samples were recieved at a temperature of 19.8°C. The laboratory work request also indicates that the samples were properly preserved, which is in conflict with the BIII chain of custody which indicates the samples should have been kept chilled at 4°C. My intention is to qualify the data due to improper preservation unless you have further information to provide.

TECHLAW, INC.

451 Hills, Suite 23 Richland, WA 99352 509-375-5667 509-375-5151 (fax)

To: Jeanette Duncan

From: Bruce Christian

Pages: I

Date: 20 June 2001

Information Request #1

H1353 - Semi-VOA

What should I use for detection limits. The 100-Arca SAP doesn't address SV detection limits.

TECHLAW, INC.

451 Hills, Suite 23 Richland, WA 99352 509-375-5667 509-375-5151 (fax)

To: Jeanctte Duncan

From: Bruce Christian

Pages: I

Datc: 20 June 2001

Information Request #2

H1353 - Semi-VOA/PCB

The laboratory work request indicates that the samples were recieved at a temperature of 19.8°C. The laboratory work request also indicates that the samples were properly preserved, which is in conflict with the BIII chain of custody which indicates the samples should have been kept chilled at 4°C. My intention is to qualify the data due to improper preservation unless you have further information to provide.

Bruce;
Rich said to preoceed + qualify as needed.

Jeanette

TECHLAW, INC.

451 Hills, Suite 23 Richland, WA 99352 509-375-5667 509-375-5151 (fax)

To: Jeanette Duncan

From: Bruce Christian

Pages: 1

Date: 20 June 2001

Information Request #1

H1353 - Semi-VOA

What should I use for detection limits. The 100-Area SAP doesn't address SV detection limits.

Bruce, Rich said to use contract RDL's for detection limits. Dearette

Lynch, Sherry A

From: Sent:

Christian, Bruce [BChristlan@TechLawlnc.com] Thursday, July 19, 2001 7:09 PM 'Lynch, Sherry A' RE: Validation Comments for Package H1353

To: Subject:

The e-mail attachments you sent aren't supported by my e-mail (I have no idea why). Joan has an e-fax number that you can fax them to that works pretty well.

----Original Message---From: Lynch, Sherry A To: 'bchristlan@techlawinc.com' Cc: Duncan, Jeanette M Sent: 7/19/01 5:12 PM

Subject: Validation Comments for Package H1353

<<RE: Comments on SDG H1353 Validation Packages>> << Validation Review for package H1353>> <<Comments on SDG H1353 Validation Packages>> Hello: I am filling in for Jeanette -- I hope it is okay to send comments to via e-mail. If you have any questions please let me know, Thank you,

Sherry

<RE: Comments on SDG H1353 Validation Packages>> <<Validation Review for package H1353>> <<Comments on SDG H1353 Validation Packages>>

Lynch, Sherry A

From: Sent: To:

Cc:

Smith-Jackson, Noe'l N D Wednesday, July 18, 2001 2:08 PM Duncan, Jeanette M; Lynch, Sherry A; Weiss, Richard L Callison, Stacey W Validation Review for package H1353

Subject:

Follow Up Flag:

Follow up

Wednesday, July 18, 2001 5:00 PM Flagged

Due By: Flag Status:

Αll,

I have reviewed data package H1353 and have no comments. The information presented in this package correlates to data that was included in the 96% UCL calc brief.

Thanks, Noe'l Smith-Jackson